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Universit́e Laval, Ste-Foy (Qc), Canada, G1K 7P4.
E-mail: {alemieux, cgagne, parizeau}@gel.ulaval.ca

Abstract

This paper presents experiments with genetically engi-
neered feature sets for recognition of on-line handwritten
characters. These representations stem from a nondescript
decomposition of the character frame into a set of rectan-
gular regions, possibly overlapping, each represented by
a vector of 7 fuzzy variables. Efficient new feature sets
are automatically discovered using genetic programming
techniques. Recognition experiments conducted on isolated
digits of the Unipen database yield improvements of more
than 3% over a previously manually designed representa-
tion where region positions and sizes were fixed.

1 Introduction

Many handwriting representations have been developed
over the past decade [10]. These sophisticated methods
were however created and fine tuned with human knowl-
edge and expertise, using an expensive, time consuming
trial and error process. This paper reports on ways of auto-
matically building efficient input feature sets for character
classifiers, using Genetic Programming (GP) [1, 6].

GP has been found very useful for discovering creative
solutions in a wide range of problems [7]. It is based on
a Darwinian search process where populations of solutions
(programs) evolve over time (generations) using, on the one
hand, selection operators based on solution fitness to de-
cide which solutions survive into the next generation, and
on the second hand, genetic operators that modify current
solutions. The application of GP to handwriting recogni-
tion is relatively new. To the authors knowledge, the only
other previous work has been published very recently for
off-line scripts [11]. This work is similar to ours, but was
applied at the pixel level, whereas we make use of higher
level information extracted from on-line scripts.

The paper is organized as follows. Section 2 first reviews
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Figure 1. A region base representation: a) ba-
sic regular grid; b) floating regions.

an existing character representation that will serve as a ba-
sis for comparison. Then, Section 3 gives a description of
the genetically engineered representations. Section 4 con-
tains the experimental results followed by their analysis in
Section 5. Finally, Section 6 concludes this paper.

2 Fuzzy-Regional Representation

One representation for handwriting recognition is based
on a window of attention [4], as illustrated in Figure 1. This
representation is said to be “regional”, because the window
of attention is subdivided into a grid of distinct regions (3×2
for Figure 1a). Within each of these regions, 7 fuzzy vari-
ables are extracted [4]: the first three measure the degree to
which region content isrectilinear, curved clockwise, and
curved counterclockwise, while the other four measure the
degree to which region content ishorizontal, vertical, and
oblique with either positive or negative slopes. These 7
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variables are then assembled to form a fuzzy vector, and
the basic feature set is simply the concatenation of all re-
gional fuzzy vectors plus a certain number of global features
(see [4] for more details).

One limitation of this input representation is that the
topology of the regions is fixed on a regular grid that stems
only from the intuition of the designer. More recent work
devoted to improving on this representation [9] has shown
very good performance on the Unipen database using a3×2
or a 3 × 3 configuration. However, it has also raised the
question about how good the same features could be on
some other non regular topology. Since then, many new
ideas led to small improvements, but other attempts were in
vain, wasting precious development resources. The object
of this paper is to experiment with new automatic search
techniques, namely genetic programming, that can be ex-
ploited to genetically “discover” a better handwriting repre-
sentation.

3 Genetically Engineered Representations

In the 19th century, Charles Darwin proposed his rev-
olutionary theory of natural selection which later inspired
many persons in various fields of research like Holland [5]
in 1975, who stated for the first time the concept of Ge-
netic Algorithms (GA). This interesting scheme led to an-
other more general concept sketched by Koza [6] in the
late 1980s: Genetic Programming (GP). It is an evolution-
ary computation technique that can automatically find com-
puter programs to solve various problems without explicit
programming.

GP, just like GA, is based on a Darwinian process where
populations of individuals evolve in an environment that fa-
vors the survival of the fittest. The living individuals trans-
mit their good genes (those that make them fit) to their off-
spring through reproduction. Reproduction itself is based
on principles of cellular reproduction through genetic op-
erations like mutation and crossover. The fundamental dif-
ference between GA and GP resides on the genotype used
by each strategy. GA individuals are coded with bit strings
whereas GP uses a tree-based genotype. This impacts di-
rectly on the type of problems that can be solved. While
GA are often used to optimize system parameters, GP takes
advantage of an increased versatility to create and improve
structures, not only values. The branches of the trees are
used to code elementary operations relevant to the problem
domain, while the leaves represent the inputs. Moreover,
these trees can be interpreted in various ways [6] that lead
to programs as algorithmic and sequential group of opera-
tions.

Figure 2 illustrates the basic algorithm behind our spe-
cific evolutionary paradigm. The first step consists in ini-
tializing a population with randomly generated individu-
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Figure 2. Basic evolutionary paradigm.

als. These individuals are programs that are able to con-
struct feature spaces for handwriting recognition, using a
fuzzy-regional representation (§2). Genetic operators such
as crossovers and mutations are then applied on this pop-
ulation in order to beget new individuals (see [6] for more
details on genetic operators). Next, the fitness of these new
individuals need to be evaluated in order to guide the selec-
tion process that engenders the next generation. This fitness
evaluation translates into measuring the performance of the
feature space, that is in estimating the recognition rate of
some classifier based on that feature space.

A classifier must be trained and tested on some data set,
partitioned into training and testing data. This partitioning
can be fixed throughout the evolution, or can be changed at
each generation, or even for each individual. We change the
partitioning for each individual in order to seek out more
robust solutions. Part of the training set is used as a valida-
tion set in order to halt training. Correct classification rate
on the testing set is used as individual fitness.
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To use GP, one must specify two critical components.
The first is a fitness function such as the above. The sec-
ond is the set of elementary primitives that can be used to
construct tree nodes. These primitives should generally be
designed to transform an input of a specific data type, and
produce an output of the same type. They represent prior
functional knowledge of the problem domain. The follow-
ing subsections describes the different families of primitives
for which we give results in Section 4.

3.1 Floating regions

The starting point of the work presented in this paper is
a character representation based on a regular grid of regions
that spans evenly the surface covered by the character [4]
(Figure 1a). It is likely, however, that this approach is not
optimal. For example, some noise may result from an over-
sized region, or important discriminant features may not be
well extracted, because of an undersized or ill-positioned
region. Thus, the position and size of each region should
not be fixed arbitrarily, but should be determined experi-
mentally (Figure 1b).

Continuous values. As a first attempt to improve upon the
base representation, a genetically engineered grid maker is
developed. The fixed grid of the original representation is
replaced by a variable grid composed of floating regions
that can have different sizes and aspect ratio. The genotype
of this grid maker is composed of the following primitives:

1. Continuous ephemeral constants (see [6]) randomly
generated and defined over interval[0, 1];

2. Basic arithmetic operators(+,−,×,÷) for computing
new values;

3. A REGoperator for extracting the fuzzy content of a
region defined by four arguments: the first two specify
the position of the region’s lower left corner; the last
two specify the position of the upper right corner.

Constants are used as tree leaves. They can serve either
directly as inputs to theREGoperator, or they can be com-
bined with other values through arithmetic operators. The
REGoperator itself returns the lower left corner of the re-
gion, which can eventually be reused as a value to define
another region. There are two different versions of theREG
operators: the first returns theX coordinate, while the sec-
ond returns theY coordinate. AREGoperator extracts the
region content as a side effect, and concatenates the cor-
responding fuzzy vector to the final feature set. Inputs of
this operator are interpreted as virtual coordinates into the
character frame, where (0,0) is the lower left corner of the
frame, and (1,1) is the upper right corner. Any value outside
interval[0, 1] is simply folded back into the interval.

Discrete values. A second experiment in this family
slightly modifies the first grid maker by reducing the search
space dimensionality. The idea is simply to modify the dis-
tribution of constants in order to better limit the search space
of the evolution process. Hence, constants are again uni-
formly generated over interval[0, 1], but with 0.05 incre-
ments. This leads to a discrete distribution of initial values.
Also, operators(×,÷) are removed from the primitive set
so that values remain discrete. Finally, any values exceed-
ing the limits are folded back into the interval[0, 1], as with
continuous values.

Differential values. The third experiment for floating re-
gions uses differential positioning relative to the3× 2 grid.
In this way, the evolution process begins with a reduced
search space solidly anchored on this regular grid. Thus,
individuals define changes to the 3x2 grid. It is important to
note that both position and size of the regions are modified
in this model. TheREGoperators are modified so that, for
instance, an argument of 0.1 is interpreted as an increment
to the coordinate of the default corresponding region. Six
different REG operators are defined, one for each region
of the 3 × 2 grid. Constants for this experiment are uni-
formly generated over interval[−0.35, 0.35] with discrete
increments.

3.2 Fuzzy operators

A second family of experiments, similar to the previous
one, tries to exploit fuzzy operators to act on the regional
vectors before their concatenation to the final feature set.
With these operators, the trees now have to deal with 2 dif-
ferent types of data: floating point values and fuzzy vectors.
This particular tree organization is called strongly-typed ge-
netic programming [8]. The following operators are added
to the primitive set in order to deal with fuzzyfied regions
defined by theREGprimitives:

1. Unary logicalNOT operator that returns the fuzzy
complement of its input vector;

2. Binary logicalAND andOR operators that return re-
spectively the fuzzy conjunction and disjunction of its
input vectors;

3. Finally, aCAT operator that simply returns its input
vector, after concatenating it to the output feature set
as a side effect.

TheREGoperator is also modified to extract and return the
fuzzy content of a given region, but without any side effect
(its side effect is transfered to theCAToperator). Figure 3
gives a synthetic example of a tree that uses these operators.
In this example, the triangles represent subtrees containing
only arithmetic operators and constants (not detailed). For a
given REGoperator, its arguments(X1, Y1) and(X2, Y2)
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Figure 3. Example of a tree for floating regions
using fuzzy operators.

specify respectively the lower left and upper right corners
of the region. This particular example illustrates the case of
differential values, where six differentREGoperators num-
bered 1 to 6 exist, one for each of the six regions of the
basic3× 2 grid. This tree can be interpreted as the follow-
ing feature set:R5+

[
(R5∧ R6) ∨ (R3∧ R4)

]
, whereRn

represents the fuzzy vector of the modifiednth region,+ is
concatenation,∧ is logicalAND, and∨ is logicalOR. Note
that an implicitCAT is always executed at the tree root.

3.3 Fitness Evaluation

To build our fitness function, because GP is very CPU
intensive, especially with large populations of individuals,
we have used a relatively small development set of isolated
digits extracted from the Unipen Train-R01/V07 database
[3]. Overall, 375 digits per class were randomly chosen and
subdivided further into training, validation and testing sub-
sets of respectively 125, 65, and 185. The training subset
is used to train a multilayer perceptron classifier using stan-
dard back-propagation, the validation subset to halt training,
and the testing subset to compute fitness.

Furthermore, to avoid code bloating and limit the size
of the feature space, a penalty of1% per CAT operator in
excess of 8 is also imposed. In practice, this makes the evo-
lution converge towards individuals who acquire the maxi-
mum number of possible regions, benefiting from the high-
est feature size without penalty.

4 Experimental Results

The experiments were conducted using a development
version of Open BEAGLE1 [2], a new versatile C++ frame-
work that implements GP and other evolutionary algo-
rithms. Like many other techniques, GP requires the adjust-
ment of several parameters that are summarized in Table 1.

1http://www.gel.ulaval.ca/˜beagle

Table 1. GP experimental parameters.

Parameter Value

Number of generations 65 to 250
Population size 5× 4 000
Migration type one-way ring
Number of migrants 80
Tournament selection 5 participants
Minimum initial tree height 5
Maximum initial tree height 9
Maximum tree height 15
Crossover probability 90%
Shrink/swap mutation probability 50%
Standard mutation probability 5%

Evolutions were distributed on a Beowulf cluster of 19
PCs based on AMD Thunderbird Athlon processors clocked
at 1.2 Ghz. A typical run that evolves a population of 20
000 individuals for about 250 generations can require over
4 weeks of CPU time. Table 2 summarizes the recognition
rates obtained for both families of experiments. It also com-
pares these rates with the performance of a basic3× 2 and
3× 3 grid. These recognition rates stem from the complete
section 1a of the Unipen DevTest-R02/V02 data set which
contains 8598 digits (including some unreadable charac-
ters). The classifiers were trained on the specified feature
set extracted from the same data set that was used for GP
(i.e. 3 750 randomly chosen digits from Train-R01/V07).

The results of Table 2 should not be interpreted in
an absolute way. The corresponding classifiers are not
trained on the complete Unipen training set, and feature sets
based only on fuzzy regions are not discriminant enough to
achieve very high performance2. These results, however,
do have a relative significance that is discussed in the next
section.

The first column of Table 2 specifies the feature set. Ba-
sic3×2 and3×3 represent two regular3×2 and3×3 grids,
while Float Reg and Fuzzy Ops denote respectively the two
families of experiments: floating regions (§3.1) and fuzzy
operators (§3.2). LettersC, D, and∆ specify respectively
continuous, discrete, and differential values (§3.1). The sec-
ond column states the total number of fuzzy vectors in the
final feature set. The total feature set size is thus 7 times
this number. Column 3 gives the average recognition rates
obtained over 5 different training runs. The maximum over
these runs is given in column 4. Finally, column 5 shows
the increase in performance compared to the3× 2 grid.

Figure 4 shows a graphical view of the different regions
contained in one individual that evolved from the Fuzzy Ops
family. Each rectangular region in that figure corresponds

2Our current best feature set/classifier combination performs at the
97% level [9].
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Table 2. Experimental results for Unipen DevTest-R02/V02, Section 1a (isolated digits).

Representation Fuzzy Mean Rec. Max Rec. Max Shift
Type Vectors Rate (%) Rate (%) Basic 3x2

Basic 3x2 6 91.4 92.3 –
Basic 3x3 9 92.1 93.0 +0.7%

Float Reg (C) 8 95.2 95.6 +3.3%
Float Reg (D) 8 93.0 93.6 +1.3%
Float Reg (∆) 8 92.1 92.8 +0.5%
Fuzzy Ops (C) 8 93.0 93.4 +1.1%
Fuzzy Ops (D) 8 92.2 93.2 +0.9%
Fuzzy Ops (∆) 8 92.2 93.2 +0.9%
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Figure 4. Genetically engineered representa-
tion: a) First and b) second sets of regions.

to oneREGprimitive. That particular individual contains a
total of 20 such primitives (3 could not be shown).

5 Analysis

Results obtained with the two families of experiments
yield an improvement of at most+3.3% over the basic3×2
grid. Figure 5 gives a few samples of recognized digits
taken from DevTest-R02/V02. These digits are all confused
when using the simple3 × 2 grid. While looking at these
digits, one should not forget that training was conducted on
a somewhat limited data set. Curiously, if we train with the
best feature set using the complete Unipen Train-R01/V07
database (15 953 digits instead of3 750), we obtain very
similar performances (≈ 95.6%). If we do the same on
the 3 × 2 grid, the recognition rate goes up from92.3%
to 95.1%. This could mean that the evolution process has
converged to a representation which is not so much charac-
terized by more discrimination power, but rather by better

Figure 5. Samples of recognized digits.

generalization capability.

This best result is for the first family of experiments,
using continuous values. It shows the potential of GP for
automatic feature set extraction. Moreover, this represen-
tation outperforms by+2.6% the basic 3x3 grid that has a
higher feature count. Results also show that the addition of
fuzzy operators, in the second family of experiments, does
not seem to succeed in increasing performance. A possible
explanation for this is that it contributes to a phenomenon
known as intron proliferation [1] (similar to ”code bloat-
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ing”). For example, the individual of Figure 4 contains 20
REG primitives, but only 8CATs. And 7 of theseCATs
are applied directly on the output of aREG, thus in effect
bypassing the purpose of the fuzzy operators that need to
be positioned in between aREG and aCAT to be of any
use. These 7CATs were applied on regions 2, 4, 7, 12, 13,
17, and 18 (see Figure 4). The 8th one, which stems from
the tree root, is a complex expression that cannot be readily
visualized.

Another interesting fact about the generated individuals
is that many of them perform very well. Thus, GP has found
several different feature sets with equivalent performance.
As for the use of continuous, discrete, or differential values,
results are inconclusive. It appears that GP is able to deal
with any type of values, although best results were achieved
with continuous values. But this could be fortuitous.

One major improvement that could be done is in the area
of theREGprimitive. Instead of extracting the seven fuzzy
variables simultaneously and outputing a fuzzy vector, we
are considering using specialized primitives that would ex-
tract only one variable at a time. Also, we intend to use
Automatically Defined Functions (ADF) [6] for evolving
sub-programs (sub-genotypes) that would define these re-
gions. Then, the main program (genotype) could concen-
trate on the fuzzy operators between single variables, “call-
ing” sub-programs to obtain regions. Another possible im-
provement would be to use a faster classifier like, for in-
stance, a K-Nearest Neighbor (KNN). Indeed, although the
MLP is quite efficient in testing mode, it’s training phase
is usually slower than the training/testing cycle of a KNN.
And since the fitness function of GP individuals requires a
single test run, the MLP that was used in these experiments
is quite inefficient. Preliminary tests have shown that by
using a simple 1-NN classifier instead of an MLP, process-
ing time could be cut at least in half, even for large training
and testing sets. But the area where we expect the greatest
improvements lies in the discovery of per class specialized
feature sets, as well as feature sets specialized for discrimi-
nating between ambiguous character pairs.

6 Conclusion

This paper has presented a method for automatic extrac-
tion of efficient handwriting representations through genetic
programming. Although this work is exploratory in nature,
results are very encouraging: a basic feature set was im-
proved upon by more than3.3% without any explicit pro-
gramming.

Genetic programming techniques have the faculty of dis-
covering novel solutions to problems, using a subtle mixture
of user defined elementary operations (instructions), fitness
driven selection, pure luck, and brute force. We feel that it
holds great promises for both handwriting recognition and

pattern recognition in general. One of its main characteris-
tic is also that it is not limited to working in a finite vectorial
space, contrary to neural networks, for instance.

But it also has shortcomings. One of them is the huge
computer resources needed to discover interesting problem
solutions. With rapid progress in microprocessor design and
manufacturing efficiency, however, this problem is dimin-
ishing rapidly. Moreover, evolutions over (very) long pe-
riod of time can easely be envisioned. After all, if a typical
research project can span several years, why would we not
be willing to wait for several months of GP?!
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