
A Robust Master-Slave Distribution Architecture for Evolutionary
Computations

Christian Gagné, Marc Parizeau, Marc Dubreuil
Laboratoire de Vision et Systèmes Numériques (LVSN),

Département de Génie Électrique et de Génie Informatique,
Université Laval, Québec (QC), Canada, G1K 7P4.

{cgagne,parizeau,dubreuil}@gel.ulaval.ca

Abstract

This paper presents a new robust master-
slave distribution architecture for multi-
ple populations Evolutionary Computations
(EC). It discusses the main advantages and
drawbacks of master-slave models over is-
land models for parallel and distributed EC.
It also formulates a mathematical model of
the master-slave distribution policies in or-
der to show that, contrary to what is implied
by current mainstream developments in is-
land models, a well designed master-slave ap-
proach can be both robust and scalable (up
to a certain point). Finally, it introduces
some of the details of a new C++ framework
named Distributed BEAGLE, which imple-
ments this architecture over the Open BEA-
GLE EC framework.

1 Introduction

The generic problem solving abilities of Evolutionary
Computations (EC) are now well established (Bäck
et al., 2000). These abilities, however, come at a high
computational cost, especially when evaluation of fit-
ness requires a long processing time, which is usu-
ally the case for non trivial problems. On the other
hand, the evolution process of ECs is implicitly paral-
lel as every individual in the population can be eval-
uated independently. This paper introduces the ar-
chitecture of Distributed BEAGLE, a robust, efficient,
adaptive, and scalable master-slave model for Parallel
and Distributed Evolutionary Computations (PDEC).
This architecture is targeted toward local networks of

computers. Moreover, it is based on the C++ Open
BEAGLE EC framework (Gagné and Parizeau, 2002)
which implements multiple populations EC with mi-
gration on a single processor.

The recent availability of cheap Beowulf clusters has
generated much interest for PDEC. Another often ne-
glected source of CPU power for PDEC are networks
of PCs, in many case very powerful workstations, that
run idle each day for long periods of time. To ex-
ploit efficiently both Beowulfs and networks of het-
erogeneous workstations, special care must be taken
as to not fall into the current patterns of PDEC, as
they are often made with Wide Area Network (WAN)
in mind. The key features of a good PDEC capable
of exploiting networks of heterogeneous workstations
are transparency for the user, robustness, and adap-
tivity. Transparency is essential to both the user of
the PDEC and the user of the workstation, as none
want to deal with the other. One way to implement
such a PDEC is as a screen-saver. Robustness is very
important because evolutionary computations may ex-
ecute over long periods of time during which different
types of failures are expected: hard failures caused by
network problems, system crashes or reboots, and soft
failures that stem from the use of the workstation for
other tasks (e.g. when the user deactivates the screen-
saver). Finally, adaptivity refers to the capability of
the PDEC to exploit new or compensate for lost com-
puting resources (dynamical network configuration).

Four main types of PDEC can be defined: master-slave
with one population, island model made of several dis-
tinct populations, fine grained, and hierarchical hy-
brids (Cantú-Paz, 2000). Master-slave PDEC use one
processor to store the whole population and apply evo-
lutionary operators (usually selection, crossover, and



mutation). The population is distributed to slave pro-
cessors for fitness evaluation at each generation. Island
model PDEC consists in evolving isolated demes that
occasionally exchange individuals in a migration pro-
cess. Fine grained PDEC consists in evolving popula-
tions spatially distributed on processors, generally us-
ing a rectangular matrix. This class of PDEC is partic-
ularly adapted to massively parallel SIMD computers
and is now rarely used in the EC community. Finally,
hierarchical hybrids use an hybrid approach between
master-slave (or fine grained) and island model, in or-
der to exploit positive aspects from both paradigms.

Three freely available PDEC systems can be found on
the Web: DREAM, ECJ, and GALOPPS. DREAM
(Distributed Resource Evolutionary Algorithm Ma-
chine) (Arenas et al., 2002; Paechter et al., 2000) is
a peer-to-peer system based on the island model. In
DREAM, each node evolves its own population. Nodes
discover the network by interacting with their neigh-
bors. The DREAM system is targeted toward Wide
Area Networks (WAN) where communication costs are
high (Jelasity et al., 2002). It is very scalable and
robust as there is no critical entity that the system
depends upon. But it has the limitations of the is-
land model (see Section 2). ECJ (Luke, 2002) is
also based on the island model. It is a generic EC
Java-based framework that implements its PDEC us-
ing Java TCP/IP sockets. Its distribution features
are not as sophisticated as DREAM, but it includes
enough functionalities to be used on Local Area Net-
works (LAN) or on Beowulf clusters. Finally, GA-
LOPPS (Genetic ALgorithm Optimized for Portability
and Parallelism System) (Punch and Goodman, 2002)
is also based on the island model. It is tightly linked
with a specific genetic algorithms library, S-GA. It uses
the file system to share information among processors.
We are not aware of any freely available master-slave
PDEC. But we know that several researchers have im-
plemented basic master-slave architectures based on
tools such as PVM or MPI.

Paper structure goes as follows. First an analysis of the
merits and limitations of the two mostly used types of
PDEC is made, that is master-slave and island model.
Thereafter, different master-slave distribution policies
are presented and analyzed. The Open BEAGLE EC
framework is then summarized before finishing with
details on the distributed BEAGLE approach.

2 Master-slave vs Island Model

The island model is the PDEC architecture that cur-
rently receives the most attention in the EC commu-
nity (Andre and Koza, 1996; Paechter et al., 2000) for

the following reasons: 1) it scales well as each node
communicates only infrequently with its neighbors, 2)
the approach is robust as there is no centralized con-
trol or data, 3) the communications are asynchronous
and limited to punctual migration of small set of indi-
viduals, and 4) there is an implicit use of populations
with multiple demes.

But the island model also has several limitations: 1)
the population sizes must be tuned to roughly balance
computational load of nodes, 2) the evolutions cannot
be reproduced as migration is asynchronous and de-
pends on the state of the processors/network, 3) the
distribution of results among nodes complicates data
collection and analysis, 4) the method is not particu-
larly adapted to networks of heterogeneous computers
where availability of nodes is limited in time, and 5)
when a node crashes, a part of the global population
doesn’t evolve and may even be lost.

On the other hand, master-slave PDEC have also been
widely used by the EC community for the following
reasons: 1) it is a simple transposition of the single
processor evolutionary algorithm onto multiple proces-
sor architectures that allows reproducibility of results,
2) there is no permanent loss of information when a
slave fails or is unreachable by the master, 3) it is ap-
propriate for networks of computers where availabil-
ity is sometimes limited (e.g. available only during
night time or when screen saver is on) as nodes can be
added or removed dynamically with no loss of infor-
mation, and 4) it is made of a centralized repository
of the population which simplifies data collection and
analysis.

But the master-slave also has limitations that restrict
their usability under some circumstances: 1) it may
not scale as well when the master is overloaded or when
the population size becomes very high, 2) a crash of
the master node can paralyze the whole evolution, 3)
there is significant communication cost associated with
transmission of all individuals through the network,
and 4) there is synchronization overhead when some
slave nodes are lagging1.

In the light of these arguments, we strongly believe
that a master-slave architecture for PDEC is appropri-
ate for small to “medium-large” size networks of com-
puters, which are commonly used by EC researchers
(see Section 3). Moreover, in the context of hetero-
geneous and/or partial availability of resources2 using
a master-slave is more natural and efficient than clas-

1Assuming a generational evolutionary algorithm.
2For example, when using networks of workstations dur-

ing night time and week-ends, or in the context of very low
priority time-sharing.



sical island model PDEC. The classical island-model
is not designed to deal with these features, essentially
because populations (demes) are tightly coupled with
processing nodes. In contrast, the master-slave model
has all required features. One issue that needs to be
addressed, however, is its ability to scale with a large
number of slave nodes, knowing that there exists a
communication bottleneck with the master node.

3 Master-slave Distribution Policies

Two main distribution policies can be used in classical
master-slave PDEC. The first, n-slaves-n-sets, sepa-
rates the demes into n equal sets of individuals and
then sends a set to each of the n nodes. It has the
advantage of minimizing the number of client-server
connections. But heterogeneous clients generate syn-
chronization overheads as the processing of the fitness
evaluation will be as fast as the slowest node. If a
node is removed or fails in some way, its associated set
of individuals must be re-dispatched to another node,
emphasizing the synchronization overhead. Moreover,
a slave added during an evaluation cycle will not be
used until the next generation.

The second distribution policy is to send the individ-
uals one-by-one to client nodes. Using this approach,
the synchronization problems are minimized and an
implicit load-balancing is accomplished. Nodes can be
added (or removed) dynamically with minimal over-
head. But it can also introduce problems of commu-
nication latency which, in turn, can reduce scalability
of the system.

What we propose in this paper is that a good master-
slave PDEC system must use a hybrid distribution
policy where a variable-size set of individuals is sent
to evaluation nodes. The following reasoning demon-
strates the idea by using a mathematical model of the
master-slave PDEC with parametrized size of individ-
ual sets.

The speedup of such a system can be computed using
the following equation.

speedup =
Ts

Tp
(1)

where Ts is the time needed to evaluate the fitness of
the individuals on a single processor, and Tp is the time
needed to evaluate the fitness of the same individuals
in parallel, using P processors. We assume here that
the time required for selection and genetic operations
is negligible in comparison. Time Ts is given by:

Ts = NTf (2)

Tl STc STf

P C

Tp

Figure 1: Computation of Tp where C correspond to
the communication cycles, P , the number of proces-
sors, Tl, the average latency of each connection, Tc,
the transmission time needed to send one individual,
Tf , the time needed to evaluate the fitness of one indi-
vidual and S, the number of individuals sent to nodes.

where Tf is the time needed to evaluate the fitness of
a single individual, and N is the population size. As-
suming a fixed size S for the sets of individuals sent to
processing nodes (i.e. complexity of the fitness evalu-
ation is about constant over all individuals and nodes
are homogeneous), then the number of communication
cycles C needed for a generation is:

C =
⌈

N

PS

⌉
(3)

Time Tp can now be computed using (worst case):

Tp = CSTf︸ ︷︷ ︸
computation

+ CPSTc︸ ︷︷ ︸
communication

+ CTl︸︷︷︸
latency

(4)

where Tc is the transmission time needed to send one
individual and receive its fitness, and Tl is the average
latency of each connection (here we assume that the
load on the server and network is constant). Figure 1
illustrates the terms of formula 4. Finally, a last term
Tk may be added in equation 4 to represent the time
delay associated with node failures:

Tp = CSTf + CPSTc + CTl + Tk (5)

with:

Tk =


0 K = 0

(1− 0.5K)STf︸ ︷︷ ︸
synchronization

+KSTc︸ ︷︷ ︸
comm.

+ Tl︸︷︷︸
latency

K ∈ [1, P ]

(6)



where K is the number of observed failures. The term
associated with synchronization in equation 6 is given
under the assumptions that each failure is indepen-
dent and that their occurrences is on average half-
way through the fitness evaluation process. We ne-
glect here the fact that node failure might reduce P ,
the number of available processors. We simply assume
that P is constant.

3.1 Results

Using this theoretical model, we can now investigate
the following very conservative scenario. Given a Be-
owulf cluster made of identical computers and a 100
Mbit/s Ethernet switch. Say a population of N =
500000 individuals (total) is evolved, where fitness
evaluation requires an average of Tf = 1 s. Let the av-
erage length of individuals, including their fitness, be 1
Kbyte, which corresponds to about Tc = 1.4×10−4 s if
the effective network bandwidth is ≈ 7 MB/s. Finally,
let the average latency per connection be Tl = 0.1 s
(this value may seem quite high but includes all con-
nection latency, that is latency associated with net-
working, operating system, and program processing).

Figure 2a presents the speedup curves for some S val-
ues. It shows that the speedup is near optimal for
S = {10, 0.1N

P , N
P }. For S = 1, however, performance

starts to degrade given the large latency Tl. Figures
2b and 2c show the same curves but for one and five
failures respectively (K = 1 and K = 5). It can be
observed that a value S = N

P no longer achieves linear
speedup, and that the intermediary value of S = 10
(for this scenario) makes a good compromise between
efficiency and robustness. When the number of fail-
ures increases, greater loss of performance should be
expected with larger sets of individuals.

Figure 3 investigate the effect of changing times Tf ,
Tc, and Tl on the speedup. First, assume a fixed
number of processors P = 200. Figure 3a presents
the effect of varying the fitness evaluation time Tf

in the range [0.1, 10]. It shows that the shorter is
Tf , the bigger is the influence of Tc and Tl, which is
even more noticeable when S is very small. Figure 3b
shows the effect of communication time on the speedup
(Tc ∈ [1.4×10−5, 1.4×10−3]). As expected, the bigger
the communication time, the smaller is the speedup.
But, we notice that the decrease of speedup is propor-
tionally the same for the different values of S. This
make sense as the amount of communication is inde-
pendent of S. Finally, Figure 3c presents the speedup
observed for different latencies (Tl ∈ [0.01, 1.0]). It
clearly demonstrates that the influence of latency be-
comes important as S gets smaller. From this obser-

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

P

sp
ee

du
p

S=1
S=10
S=0.1N/P
S=N/P

(a)

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

P

sp
ee

du
p

S=1
S=10
S=0.1N/P
S=N/P

(b)

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

P

sp
ee

du
p

S=1
S=10
S=0.1N/P
S=N/P

(c)

Figure 2: Speedup curves for different size of sets
S = {1, 10, 0.1N

P , N
P }, as a function of the number of

processor used P ∈ [1, 400]: (a) when no failure oc-
curs (K = 0), (b) when exactly one failure occurs
(K = 1), and (c) when exactly five failures occur
(K = 5). Other parameters are N = 500000, Tf = 1
s, Tc = 1.4× 10−4 s, and Tl = 0.1 s.



10
−1

10
0

10
1

80

100

120

140

160

180

200

Tf

sp
ee

du
p

S=1
S=10
S=250
S=2500

(a)

10
−4

10
−3

140

150

160

170

180

190

200

Tc

sp
ee

du
p

S=1
S=10
S=250
S=2500

(b)

10
−2

10
−1

10
0

80

100

120

140

160

180

200

Tl

sp
ee

du
p

S=1
S=10
S=250
S=2500

(c)

Figure 3: Speedup curves for different size of sets
S = {1, 10, 0.1N

P , N
P }, as a function of time (logarithmic

scale): (a) fitness evaluation time Tf ∈ [0.1, 10] s, (b)
communication time Tc ∈ [1.4×10−5, 1.4×10−3] s, and
(c) latency time Tl ∈ [0.01, 1.0] s. Other parameters
are N = 500000, P = 200, Tf = 1 s, Tc = 1.4 × 10−4

s, and Tl = 0.1 s when they are not the independent
variable.

vation, one should conclude that S should be as large
as possible in order to minimize performance degrada-
tion caused by connection latency in loosely-coupled
parallel systems, but no larger.

In any case, the second common policy of splitting
the total number of individuals into equal size sets
(S = N

P ) is not robust to node failures nor is the first
policy (S = 1) efficient for lagging networks. These
curves thus globally show that parameter S should
be adjusted dynamically in order to optimize perfor-
mance.

3.2 Scalability Limitations

In the above analysis, it was implicitly assumed that
the server would never be overwhelmed by the client
requests. But in fact, passed a certain number of pro-
cessors, the master node networking capacity (band-
width) will saturate. At this point, the speedup will
no longer improve with the addition of new proces-
sors. This implies that overall communication time
(including latency) must be less than the time needed
to evaluate fitness:

SPTc ≤ STf + Tl (7)

and thus:

P ≤ STf + Tl

STc
(8)

Now, if S = FN
P , that is a fraction F of the maximum

size of individual sets, then the maximum number of
processors becomes:

P ≤ FNTf

FNTc − Tl
(9)

With the parameters used in our scenario (i.e. N =
500000, Tf = 1, Tc = 1.4 × 10−4, and Tl = 0.1), we
obtain an upper limit of around 7200 processors for
S = {10, 0.1N

P , N
P }, and 7800 processors3 for S = 1,

which translate for all cases to a speedup of about
3500, a little less than half of the optimal value. It goes
to show that the system can scale well for a relatively
high number of processors. In the light of this result,
the master-slave PDEC cannot be overlooked anymore
in fear of network bottleneck.

4 Proposed Implementation

Distributed BEAGLE, the proposed system, is a
master-slave distribution architecture with variable

3This difference is explained by the important latency
delays when S = 1.



genotype

yx
+

vivarium

...

deme

...

individual

...

Figure 4: Open BEAGLE Population Structure.

size of distribution sets. It is designed as a distribu-
tion extension of the C++ EC framework Open BEA-
GLE, but is generic enough, and modular, to be used
in conjunction with others EC systems with some mi-
nor modifications. To better understand the distribu-
tion architecture, here is the pertinent background on
Open BEAGLE.

4.1 Open BEAGLE

Open BEAGLE4 (Gagné and Parizeau, 2002) is a C++
framework for doing almost any kind of EC. Its archi-
tecture follows the principles of object oriented pro-
gramming, where some abstractions are represented
by loosely coupled objects and where it is common
and easy to reuse code. Currently, classical genetic
algorithms and genetic programming have been im-
plemented in the framework. The framework code and
documentation is available on the project’s Web page5.

The population in Open BEAGLE is organized into
a four-level structure as illustrated in Figure 4. The
vivarium is a container for demes of individuals. The
individuals themselves are containers for an abstract
genotype. This genotype can be instantiated to any
relevant structure (in Figure 4, it is shown as a genetic
programming tree, but this is just an example). Indi-
viduals and demes can also be specialized if needed.
On the other hand, the evolutionary algorithms are
constructed by defining sequences of operations on
demes. For example, these operations could simply be
selection, crossover, and synchronous migration. The
use of a hierarchy of abstract data structures enables
the ontogeny of multiple populations EC system where
synchronous migration between demes is possible. It
is thus generic enough to simulate an island model on
a single processor.

4.2 Distributed BEAGLE

Distributed BEAGLE comprises four main compo-
nents: the database, the server, one or more evolver
clients, and a pool of evaluation clients. Figure 5 illus-
trates the system’s architecture. The system works on

4The recursive acronym BEAGLE means the Beagle En-
gine is an Advanced Genetic Learning Environment.

5http://www.gel.ulaval.ca/˜beagle

Monitor
Client

Evolver
Client

Evaluation
Client

Server

Database

1..P

Figure 5: Distributed BEAGLE Architecture.

data by separating the EC generation concept into two
distinct steps: deme evolution and fitness evaluation.
Deme evolution is done by evolver clients. It consists
in applying several genetic and natural selection op-
erations to evolve the deme through one generation.
Once a deme has evolved, the composing individuals
need to be evaluated for fitness. Fitness evaluation
is done by evaluation clients. When all individuals
have been evaluated, the generation is finished and
the demes are ready to be evolved again. Since the
computational bottleneck in EC is usually the fitness
evaluation (at least for hard problems), an evolution
with Distributed BEAGLE is usually conducted using
a single evolution client and as much evaluation clients
as possible (one per available processor).

The database guarantees data persistency by storing
the demes and the evolution state. This is an impor-
tant element of robustness for such a software system,
where computations may span several weeks or even
months. Furthermore, the use of a common database
separates software elements specific to EC from pop-
ulation storage management. Data are classified into
two categories: demes that require evolution, and indi-
viduals that need evaluation. The use of a database in
Distributed BEAGLE is inspired from the distributed
and persistent evolutionary algorithm design pattern
(Bollini and Piastra, 1999).

The server acts as an interface between the different
clients and the database. The primary function of the
server is to dispatch the demes to evolver clients, and
the individuals to evaluation clients. The number of
individuals sent to an evaluation client depends on a
load balancing mechanism. The mechanism dynam-
ically and independently adjusts the number of indi-
viduals sent to a given evaluation node based on its
recent performance history.

An evolver client sends requests for a deme to the



server, and then applies selection and genetic opera-
tions on this deme. These operations are usually spe-
cific to the implemented EC flavor.

An evaluation client sends requests to the server for
individuals that need to be evaluated. The number
of individuals returned by the server is variable and
depends on the (recent) past performance of the client.
The evaluation clients are specific to the problem at
hand.

A monitor client sends requests to the server in order
to retrieve the current state of the evolution, allowing
users to monitor it. This client does not modify the
database content.

The load balancing policy is to regulate the size of
individual sets in order to achieve (approximately) a
constant time period between requests for all evalua-
tion clients. For fast clients, more individuals are sent
in order to lower communication latency. For slow
clients, fewer individuals are sent in order to mini-
mize synchronization overheads at the end of an eval-
uation cycle. The pursued time period is set during
initialization and can be modified during evolution in
order to optimize throughput. This design choice of
Distributed BEAGLE allows efficient performances on
loosely-coupled multi-processor systems such as Be-
owulf clusters or LAN of workstations.

When all individuals of a deme have been distributed
and after a time out proportional to the load balancing
time period, individuals that have been sent to lagging
nodes are automatically re-dispatched to other nodes
by the server until it receives a fitness response. If
duplicate answers are received, only the first one is
kept and all others are discarded. This approach both
reduces the synchronization time needed to finish a
generation and assures general fault tolerance for the
system.

The critical failure point of Distributed BEAGLE is
the server. If it crashes, the whole system comes down.
But, data persistency is guaranteed by the database.
Another interesting aspect of Distributed BEAGLE is
the robustness over computer or network failures. If a
client (slave) fails or is unreachable over the network,
the data it was processing is not permanently lost.

An important design choice of Open BEAGLE is the
use of a population with multiple demes and syn-
chronous migration. This is independent of Dis-
tributed BEAGLE. It separates parallel multiple pop-
ulations from evolution distributed on multiple pro-
cessors. We strongly believe that there is no need to
evolve a separate deme on every available processor.
Moreover, the size of the demes does not need to be

proportional to processor performance. Adding a de-
gree of liberty by separating these elements enable a
finer control over the evolution parameters.

A prototype of Distributed BEAGLE has been de-
veloped using a MySQL database6, TCP/IP sockets
as the communication protocol and XML (eXtensible
Markup Language) (Bray et al., 1998) for data en-
coding. The use of XML is inspired from lightweight
XML-based protocols for distributed applications such
as XML-RPC7 and SOAP8. The main advantages of
using XML is that messages are strongly structured,
they are represented using portable character encod-
ing, and there is a variety of XML parsers available to
process them. The project is still under development.
We plan to make it an open source project as soon as
the software will be in a stable state, with adequate
testing for a beta release.

5 Conclusion

This paper presents the benefit of using master-slave
architecture for PDEC on LANs of workstations and
Beowulf clusters. With a mathematical model and
plausible scenarios, it demonstrates that a master-
slave architecture with variable size of distribution sets
constitutes an excellent trade-off between efficiency
and robustness. It is therefore argued that the use
of master-slave with such distribution policy is appro-
priate for networks of heterogeneous computers where
availability is limited and/or variable, as when using
computers during night time or in a time-sharing way
with low priority processes, or even as a screen saver
in LANs of computers, when their availability is un-
known beforehand.

Promoting a master-slave approach may seems a lit-
tle odd as most PDEC researchers are pushing toward
the use of island model distribution architecture. The
island model is a powerful PDEC. Its main advantages
is to minimize communication costs while allowing im-
plicit use of multiple deme populations. But it has the
drawback of using at least one population per proces-
sor. Population size must therefore be tuned before-
hand for processor capacity, which is not particularly
adapted on networks with limited availability. More-
over, if the problems tackled with EC require very
complex (long) fitness evaluations, the size of each is-
land may need to be reduced, which is bad for diver-
sity. The island model PDEC was made with long
period of computers availability in mind. If a popu-

6http://www.mysql.com
7http://www.xmlrpc.org
8http://www.w3.org/TR/SOAP



lation cannot evolve because it can’t have CPU time,
a more permissive PDEC should be used. There is
no need to stick to an island model architecture only
to benefit from greater diversity provided by multiple
populations evolving in parallel with migration. We
believe that it is highly desirable to separate the par-
allel from the distributed in PDEC. Furthermore, it is
always possible to transform a master-slave architec-
ture into a hierarchical hybrid, by allowing migration
between populations. This will transform master-slave
sets into meta-island of a broader evolution environ-
ment, allowing astonishing scalability.

This paper also introduced Distributed BEAGLE,
a distribution extension to the Open BEAGLE EC
framework. Basically, it is a master-slave PDEC sys-
tem with variable-size distribution sets. The system
implements several features that enhance its general
robustness and efficiency: persistent database, dynam-
ically adjustable sets of individuals sent to clients, re-
distribution of data when clients are lagging or not
responding, and populations with multiple demes im-
plemented in a processor independent way.

Acknowledgments The authors would like to
thank Frédéric Jean, Jacques Labrie and Hélène Tor-
resan for their participation in the development of the
first prototype of Distributed BEAGLE. This research
was supported by an NSERC-Canada and FQRNT-
Québec scholarships to C. Gagné and an NSERC-
Canada grant to M. Parizeau.

References

Andre, D. and Koza, J. R.: 1996, Parallel genetic
programming: A scalable implementation using the
transputer network architecture, in P. J. Angeline
and K. E. Kinnear, Jr. (eds.), Advances in Genetic
Programming 2, Chapt. 16, pp 317–338, MIT Press,
Cambridge, MA, USA

Arenas, M. G., Collet, P., Eiben, A. E., Jelasity, M.,
Merelo, J. J., Paechter, B., Preuß, and Schoenauer,
M.: 2002, A framework for distributed evolutionary
algorithms, in Proceedings of PPSN 2002

Bäck, T., Fogel, D. B., and Michalewicz, Z. (eds.):
2000, Evolutionary Computation 1: Basic Algo-
rithms and Operators, Institute of Physics Pub-
lishing, Bristol, UK

Bollini, A. and Piastra, M.: 1999, Distributed and per-
sistent evolutionary algorithms: a design pattern,
in Proceedings of EuroGP’99, Vol. 1598 of LNCS,
pp 173–183, Springer-Verlag, Goteborg, Sweden

Bray, T., Paoli, J., and Sperberg-McQueen, C. M.:
1998, Extensible Markup Language (XML) 1.0 -
W3C Recommendation 10-February-1998, Techni-

cal Report REC-xml-19980210, World Wide Web
Consortium

Cantú-Paz, E.: 2000, Efficient and accurate parallel
genetic algorithms, Kluwer Academic Publishers,
Boston, MA, USA

Gagné, C. and Parizeau, M.: 2002, Open BEAGLE:
A new versatile C++ framework for evolutionary
computation, in Proceeding of GECCO 2002, Late-
Breaking Papers, New York, NY, USA

Jelasity, M., Preuß, M., and Paechter, B.: 2002, A
scalable and robust framework for distributed ap-
plications, in Proceedings of the CEC 2002, pp
1540–1545, IEEE Press

Luke, S.: 2002, ECJ Evolutionary Compu-
tation System, Seen January 07, 2003 at
http://www.cs.umd.edu/projects/plus/ec/ecj

Paechter, B., Bäck, T., Schoenauer, M., Sebag, M.,
Eiben, A. E., Merelo, J. J., and Fogarty, T. C.:
2000, A distributed resource evolutionary al-
gorithm machine (DREAM), in Proceedings of
CEC’00, pp 951–958, IEEE Press

Punch, B. and Goodman, E.: 2002, GA-
LOPPS 3.2, Seen December 10, 2002 at
http://garage.cps.msu.edu/software/galopps


