
Adapting the strongly-connected trellis concept for use
with trellis-coded modulation

Sébastien Roy1 and Paul Fortier2

1Systèmes Tertius Oculus
RR 2, Site 17, Box 9, Beresford, NB, E0B 1H0

2Département de génie électrique
Université Laval, Sainte-Foy, QC, G1K 7P4

fortier@gel.ulaval.ca

Abstract. The strongly-connected trellis was originally proposed by
Chang and Yao as a way of increasing the efficiency of Viterbi decoders
implemented on locally-connected parallel processor arrays. Originally,
this concept was derived with binary convolutional codes in mind. Its
adaptation to TCM is non-trivial due to the presence of parallel branches
in the trellis. The method we propose utilizes a modified strongly-con-
nected trellis concept to increase the efficiency of TCM decoders on
locally-connected processor arrays. A TCM decoder based on these
principles was implemented on a MasPar massively parallel computer
for experimental purposes.

1 Introduction

The complexity of the Viterbi algorithm is proportional to the coding gain desired. In
fact, obtaining high coding gains at high symbol rates requires enormous computa-
tional power. This has lead to increased interest in parallel implementations of the Vit-
erbi algorithm, parallel processing being the last possible way to increase processing
speed once the physical barrier has been reached in VLSI. Modern VLSI Viterbi
decoders are made up of parallel processing elements and can provide high throughput
for codes up to length K = 7.

Unfortunately, it would appear that the Viterbi algorithm is difficult to implement
in parallel [1]. Indeed, the algorithm cannot be divided into independent sub-tasks and
calls for high connectivity between processing elements. In VLSI, links occupy more
space than transistors and high degrees of connectivity can be very costly. Indeed,
VLSI design criterions call for regular, repetitive circuit patterns with local links only
(systolic arrays). Physical limits are quickly reached since the number of links neces-
sary for efficient Viterbi decoding grows exponentially with the constraint length. For
this reason, it is interesting to consider locally-connected methods even if it implies a
loss of efficiency.

Chang and Yao [2] have proposed the strongly-connected trellis in 1989 as a way
to increase the efficiency of Viterbi decoding on locally-connected processor arrays.
This concept was originally intended for binary convolutional codes. We propose a
method to adapt the strongly-connected trellis to the more powerful trellis-coded mod-
ulation schemes [3, 4]. Using these principles, a software decoder for TCM has been
constructed on a MasPar MP1 massively parallel computer.

While the application of the strongly-connected trellis to parallel Viterbi decoding
leads to increased efficiency for binary convolutional codes, it is shown herein that
similar benefits can be derived for parallel decoding of trellis-coded modulation
schemes.

This paper is organized as follows. Section 2 discusses the architecture of the
MasPar computer. In Section 3, the Viterbi algorithm is presented as a matrix opera-
tion. Section 4 introduces the concept of the strongly-connected trellis, while its appli-
cation to TCM is presented in Section 5. In Section 6, an implementation of the
parallel Viterbi algorithm to decode TCM on the MasPar is shown. Finally, the paper
concludes in Section 7.

2 Parallel architectures and the Maspar computer

Many types of parallel architectures exist and each is programmed differently. The
MasPar MP1 [5, 6] is made up of 2048 processor elements (PEs) arranged in a rectan-
gular matrix of 64 X 32. Each PE is connected to its eight nearest neighbors by high-
speed links (see figure 1). Furthermore, processors on the edges of the array are linked
to the opposite edge by wraparound links. The processor array is in fact toroidal in
shape if we consider the presence of the wraparound links. These local connections
provide a bandwidth of 24 Gigabytes per second. In addition, a global router mecha-
nism is provided to permit random point-to-point linking. Such global links are much
slower at 1.5 Gigabyte per second and important setup delays are incurred whenever a
new global link is established. Since our work is concerned with locally-connected
processor arrays, we have chosen not to use the global router.

The MasPar is a SIMD machine (Single Instruction Multiple Data). This means
that the active portion of the processor array executes the same instructions at the same
time. However, each processor operates on its own local dataset. This type of parallel
architecture is not as powerful or as flexible as the MIMD class (Multiple Instruction
Multiple Data) where each PE is an independent computer with its own memory and
program (see figure 2). On the other hand, SIMD machines are cheaper and much eas-
ier to program since the software retains a sequential flow.

With any parallel computer, maximum efficiency is almost impossible to achieve
because parallelism itself and interprocessor communications constitute an additional
overhead. In fact, the efficiency tends to decrease as the number of processors
increases [7]. Certain problems are better suited to certain architectures. It is important
to point out that the SIMD architecture of the MasPar is very specialized and is best
suited to problems involving a large number of independent sub-tasks such as image
processing.

Let us take a look at Fast Fourier Transforms as a problem for SIMD computers.
The FFT algorithm is characterized by the same type of interdependence pattern as the
Viterbi algorithm. Because of this, it is not a good algorithm for parallelisation on any
architecture, but especially SIMD. While running a single FFT problem on the
MasPar’s 2048 processors would be much faster than on most sequential machines, it
would probably not be very efficient. However, if you happen to have a large number
of such problems to resolve, it is much more efficient to run 2048 FFT’s simultane-
ously. This approach is better suited to SIMD since each processor runs its own inde-
pendent yet identical problem.

Since our goal is to accelerate a single TCM decoder and not 2048 such decoders,
our problem is a poor candidate for SIMD parallelisation. The strongly-connected trel-
lis concept helps to attain the maximum efficiency possible on a locally-connected
architecture (SIMD or MIMD).

Our parallel implementation is unidimensional; in other words, all states in a single
stage are treated simultaneously but each stage is treated sequentially. In this manner,
we are making a better use of the number of processors and the architecture of the
MasPar computer [8].

3 Parallel Viterbi decoding using matrix operations

Let us define an adjacency matrix that represents the trellis stage corresponding to
the kth transition. The element holds the metric of the branch form state i to
state j. Elements for which no branch exists in the trellis are given an infinite (or very
large) value (see figure 3).

The add-compare-select step of the Viterbi algorithm can be redefined with the
help of a matrix-vector operation similar in structure to matrix-vector multiplication.
This approach has been helpful in the process of parallelizing the Viterbi algorithm
since matrix-vector multiplication is well adapted to parallel architectures and exten-
sively covered in the literature [7].

Given a vector of N elements containing the lengths of the survivors after the
kth transition, the matrix-vector form of the survivor update operation can be written
as:

where the ⊗ operator is defined as follows:

Let us compare equation (2) with the definition of matrix-vector multiplication:

It can be verified that the ⊗ operator is structurally equivalent to matrix-vector
multiplication. The sum and multiplication operations in the definition of matrix-vec-
tor multiplication have merely been replaced by the minimum operator and addition,
respectively.

We need also know from which state the new survivors come so we must compute
for each survivor i:

Now that the core of the Viterbi algorithm has been formally defined as a matrix-
vector operation, we need to define parallel algorithms based on equation (2). Given a

Akak i j,[]

Pk

Pk 1+ Ak 1+ Pk⊗=

pk 1+ i[] min ak 1+ i j,[] pk j[]+()= j 0 1 … N 1–, , ,=

pk 1+ i[] ak 1+ i j,[] pk j[]×()
j
∑= j 0 1 … N 1–, , ,=

ĵ i[] min 1– ak 1+ i j,[] pk j[]+()= j 0 1 … N 1–, , ,=

linear array of N processors with wraparound (ring array), the vector-matrix operation
can be executed in o(N) steps for an N-state convolutional code. Each processor ini-
tially contains an element of vector . Elements of matrix are entered form
the top as illustrated in figure 4. Each processor adds its element of to its element
of and stores the result in a local accumulator. As the next set of values of

 are entered, the values of are rotated one processor to the right. Those val-
ues are again summed individually by each processor and the result is compared with
the content of the local accumulator. The smallest value is stored in the accumulator.
After N steps, the accumulators contain the elements of vector .

While the method described above is simple and elegant, it is desirable to exploit
the power of more than N processors. A second method, called the division and fusion
algorithm, can be scaled to fit processor arrays of various sizes. The available proces-
sor array is initially divide in M groups of N processors (see figure 5). Each group per-
forms only a fraction of the matrix-vector operation. The first group deals exclusively
with the first steps of the matrix-vector operation and so needs only generate the
corresponding fraction of the branch metrics. The final result is merely the minimum
of the M partial results for each element of .

4 The strongly-connected trellis

The performance of Viterbi decoders implemented on systolic arrays or similar paral-
lel local connectivity structures suffers from inherent inefficiency. This is due to the
fact that most convolutional codes result in a trellis with low connectivity. This in turn
leads to sparse-matrix operations by the parallel Viterbi decoder and, therefore, ineffi-
cient use of processing resources.

To overcome this problem, Chang and Yao [2] have proposed to combine a number
r of stages into one to obtain a strongly-connected trellis where all state-pairs are
linked by one branch. There is a one-to-one correspondence between each branch of
the strongly-connected trellis and each r-branch path in the primitive trellis (see figure
6). It has also been shown that the generation of metrics for these composite branches
was straightforward and involved little additional overhead. The composite metric is
merely the sequential concatenation of the individual branchs’ metrics.

Let us define the compression ratio as the maximum number of stages of the
primitive trellis that can be compressed into one without creating ambiguity, i.e. losing
the one-to-one correspondence between the primitive trellis and the strongly-con-
nected trellis:

where b stands for the number of branches entering or leaving any state (a measure of
the connectivity of the primitive trellis) and N stands for the number of state. The L()
function rounds downward to the nearest integer. For codes with a bit rate of , b is
always equal to 2 since each state transition results of a single bit entering the encoder.
Such codes have low-connectivity trellises which implies high compression ratios. For
example, a 256 states rate convolutional code will allow a compression of eight
stages, resulting in a fully-connected trellis.

On the other hand, TCM codes are usually built around a rate in which case
b will be equal to in equation (5). Indeed, TCM is characterized by high trellis con-
nectivity. Accordingly, the compression ratio will typically be smaller for TCM

Pk Ak 1+ Pk
Ak 1+Ak 1+ Pk

Pk 1+

N
M

Pk 1+

rmax

rmax L Nblog()=

1
n

1
n

n
n 1+

n2

rmax

codes than binary convolutional codes with the same number of states N.

5 Trellis-coded modulation

Consider a 256-states 16-QASK TCM encoder as depicted in figure 7. The signal set is
partitioned in eight subsets, each of which contains two maximally distant symbols [3,
4]. The output of a rate convolutional encoder is used to select one of the eight sub-
sets while a single message bit selects the symbol to be transmitted within the subset.
The corresponding trellis is characterized by pairs of parallel branches while the over-
all connectivity remains low.

The standard decoding procedure for TCM comprises three steps:
1- Metrics are generated for all branches in a trellis stage based on unquantized

channel output and Euclidean distance (soft decision).
2- The metrics for each group of parallel branches are compared and all but the

shortest branches for each state-pair are eliminated.
3- The trellis being reduced to single branches, conventional Viterbi decoding can

now be applied.
Incorporating the strongly-connected trellis concept in the TCM decoding process

is non-trivial due to the presence of parallel branches in the original trellis. This obsta-
cle can be avoided by eliminating parallel branches (steps 1 and 2 described above) at
the primitive trellis level. Therefore, a reduced trellis, ridden of its parallel branches
can be “compressed” instead of the original one (see figure 8). The reduced trellis is
actually a representation of the subset part of the encoder where no information
remains about which signal was selected within the subset.

From this point, decoding can proceed efficiently using the Viterbi algorithm at the
strongly-connected trellis level.

6 Implementation

Initially, a table must be constructed where for each branch of the strongly-connected
trellis, the corresponding path or transition sequence in the original trellis can be
looked up. Since the reduced trellis is considered at this point, the transition sequence
is identified by its subsets and is thus unique. The table can take the form of an N X N
matrix with column and row indices corresponding to starting and ending states while
the value itself reveals the in-between transition sequence. While such a data structure
is rather large, it should be distributed to a number of local processor memories. In
fact, each processor will only need to access its own local portion of the branch-to-path
table. The purpose of this table is to provide a link between the primitive trellis and the
strongly-connected trellis, allowing work to be conducted at both levels.

The decoding algorithm can be mapped to a parallel processing array in a number
of ways. We have used a partitioning scheme based on ending states, i.e. processor 0 is
assigned all branches which end at state 0. Local memories need only contain the por-
tions of the branch-to-path table corresponding to their assigned branches.

For the TCM code described above, there are 4 branches entering or leaving any
state in the reduced trellis. This results in a compression ratio of

. Consequently, the decoding is conducted on groups of 4
symbols. For each composite branch, the corresponding subset sequence is looked up
in the branch-to-path table and eight branch metrics are then computed since there are
4 transitions and 2 parallel branches per transition. The smallest metrics for all 4 tran-
sitions are added up to form the composite branch metric.

During the reduction phase, note must be taken of which branch was selected
within each group of parallel branches. For a given strongly-connected trellis branch, a
transitional code gives this information for each branch of the corresponding path in
the primitive trellis. In our example, the transitional code would consist of a 4-bit

2
3

rmax 2564log 4= =

sequence in memory where each bit identifies the branch retained for each of the four
transitions. This transitional code is illustrated in figure 9. Once the metrics and transi-
tional codes for all branches of the strongly-connected trellis have been generated, Vit-
erbi decoding can be performed using matrix operations.

When the end of a data frame is reached, the Viterbi decoder yields a state
sequence. The survivor memory containing this state sequence also contains an associ-
ated transitional code sequence. The state sequence provides information at the subset
level while the transitional code sequence identifies the signal within each subset.
These two sequences are combined to obtain a maximum-likelihood signal sequence
from which the original message can be derived.

Figure 10 gives a general block diagram of the parallel TCM decoding algorithm
based on the strongly-connected trellis concept. One may observe that metric genera-
tion is performed at the primitive trellis level while Viterbi decoding itself (the add-
compare-select step, the bulk of the work) occurs at the strongly-connected trellis
level.

A simulation was conducted on the MasPar computer using a 16-QASK 256 states
TCM code. Using all 2048 processors, a decoding rate of 190 message bits per second
was obtained. We should point out that this is the performance of a software decoder,
written in a high level language, and it is therefore much slower than comparable cus-
tom VLSI decoders. Previously, a similar simulation based on the strongly-connected
trellis had been performed using a standard 256-states binary convolutional code - a
decoding rate of 1320 bits per second was measured [9]. This performance is 69.5
times better than a sequential decoder running on a Sun SPARCstation IPC (19 bits per
second).

On the other hand, the TCM simulation on the MasPar was 6.95 times slower than
the binary convolutional code simulation with the same number of states. This slow-
down is imputable to the higher computational complexity of the TCM code. Specifi-
cally:

- Floating point arithmetics are used for metrics instead of integer arithmetics.
- The Euclidean distance criterion is used instead of Hamming distance
- Mapping message bits to modulated signals and vice-versa constitutes an addi-

tional overhead.
- The metric generation step has to be performed at the primitive trellis level.
In theory, for a binary convolutional code with 256 states and rate , the use of the

strongly-connected trellis speeds execution by a factor of 8 (). On the other
hand, the theoretical speedup factor for a 16-QASK TCM code with 256 states is only
4. This is an additional justification for the performance gap between the two types of
codes.

7 Conclusion

In this paper, we have shown that the strongly-connected trellis concept can be suc-
cessfully applied to TCM codes and yield efficiency gains comparable to those
obtained with binary convolutional codes. Even though the actual implementation was
done on a particular computer, namely the MasPar MP1, its systolic-like architecture
serves as a good model for possible VLSI implementation.

References

[1] J. Sparso, S. Pederson and E. Paaske, “Design of a Fully Parallel Viterbi
Decoder,” Proc. VLSI 91, pp. 2.2.1-2.2.10, 1991.

[2] C. Y. Chang and K. Yao, “Systolic Array Processing of the Viterbi Algo-
rithm,” IEEE Trans. Inform. Theory, vol. 35, pp. 76-86, 1989.

1
2

2562log

[3] G. Ungerboeck, “Channel coding with multilevel/phase signals,” IEEE Trans.
Inform. Theory, vol. 28, pp. 55-67, 1982.

[4] G. Ungerboeck, “Trellis-coded modulation with redundant signal sets - Part I:
Introduction,” IEEE Communications Magazine, vol. 25, no. 2, pp. 5-11, 1987.

[5] --, MasPar Parallel Application Language (MPL) User Guide. Sunnyvale:
MasPar Computer Corporation, 1991.

[6] --, MasPar Parallel Application Language (MPL) Reference Manual. Sunny-
vale: MasPar Computer Corporation, 1991.

[7] F. T. Leighton, Introduction to Parallel Algorithms and Architectures. San
Mateo, CA: Morgan-Kaufmann, 1992.

[8] S. Roy, Méthodes de réalisation de l’algorithme de Viterbi sur un ordinateur
massivement parallèle de type SIMD, Masters’ thesis, Univ. Laval, Sainte-Foy, QC,
1993.

[9] S. Roy and P. Fortier, “An implementation of the Viterbi algorithm on a mas-
sively parallel computer”, Proc. CCECE ‘92, Toronto, Canada, pp. MM10.2.1-
MM10.2.4, 1992.

Global router64 PE's

32 PE's

1. MIMD

2. SIMD

Processor 0

Memory 0

Processor 1

Memory 1

Processor 2

Memory 2

Processor N - 1

Memory N - 1

Interconnection Network

...

PE 0 PE 1 PE 2 PE N-1

Processor 0

Memory 0

Processor 1

Memory 1

Processor 2

Memory 2

Processor N - 1

Memory N - 1

Interconnection Network

Control Unit

...

PE 0 PE 1 PE 2 PE N-1

1

11
1

2

0 0

2

1

11
1

2

0 0

2

k k+1

Ak k 1+,

1 ∞ 1 ∞
1 ∞ 1 ∞
∞ 0 ∞ 2
∞ 0 ∞ 2

=

N processors

a[1,4]+p[4] a[2,3]+p[3] a[3,2]+p[2] a[4,1]+p[1]

a[1,1]

a[1,2]

a[1,3]

a[2,4]

a[2,1]

a[2,2]

a[3,3]

a[3,4]

a[3,1]

a[4,2]

a[4,3]

a[4,4]

P

A

N processeurs

a[1,4]+p[4] a[2,3]+p[3] a[3,2]+p[2] a[4,1]+p[1]

a[1,1] a[2,4] a[3,3] a[4,2]

a[1,2]+p[2] a[2,1]+p[1] a[3,4]+p[4] a[4,3]+p[3]

a[1,3] a[2,2] a[3,1] a[4,4]

1 2 12

3
13

4 5 45

y[n]

x0[n]

x1[n]

x2[n]

CONVOLUTIONAL
ENCODER

rate 2/3, 256 states

Select signal
from subset

SIGNAL MAP

Select subset

16-QASK
signal set

(a) primitive (b) reduced

(c) compressed

0 1 1 0

Fetch corresponding state sequence from branch-to-path table

Generate metrics for the 2r primitive branches

Reduce by selecting shortest branch
in each group of parallel branches Store corresponding transitional code

Generate composite branch metric by
adding metrics of selected branches

Generate composite transitional code
by concatenation

Pass composite metrics and transitional codes to Viterbi decoder

Repeat for each branch in a strongly-connected trellis stage

