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Abstract

Markov Random Field(MRF) is e�cient to model
texture images, and many applicable models have been
developed. The interpretations of these available mod-
els provide many di�erent views of the image model
structure and their application. In this paper, we
present a new MRF model called PDE-MRF model
based on constructing generic energy function by Par-
tial Di�erential Equations(PDE) method. This model
not only includes the majority of the present particular
MRF models but also is a uniform template to develop
some new models.
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1 Introduction

Markov Random Field(MRF) was introduced into
image processing by J. Besag[1], and it has been applied
to a lot of practical problems. Such �elds of image pro-
cessing as image restoration, image segmentation and
image classi�cation employ MRF model as one of their
main tools. Among these applications, texture anal-
ysis, texture modeling are two important and fruitful
�elds.

Generally, texture generation process involves a
stochastic assumption[2]. The gray level at a point in a
texture image is highly dependent on the gray levels of
neighboring points unless the image is simply random
noise. MRF is able to describe this dependence. Ac-
cording to variable kinds of textures and applications,
many particular MRFmodels have been presented, e.g.,
Auto Models(including Auto-Logistic model, Auto-

Binomialmodel, Auto-Normalmodel and Auto-Poisson
model)[1], Multi-Level Logistic Model(MLL)[3], Hier-
archical GRF Model[4], and FRAME[5]. These mod-
els have di�erent structures, and their parameters are
determined not mainly by the texture types but by ex-
periments of goodness-of-�t of the observed texture and
the generated one. As a result, randomness is inconsis-
tently added to the structure of the model and de�ni-
tion of the parameters.

Partial Di�erential Equation(PDE) methods
have been applied to image representation for nearly
forty years. A. Turing is the researcher who �rst used
PDE model to synthesize animal patterns, in which
the method is called as reaction-di�usion[6]. A general
outline of relations between PDE and image process-
ing was presented by A. K. Jain in his paper[7]. Af-
ter introducing the notion scale-space into PDE meth-
ods by Koenderink[8] and Witkin[9], several PDE mod-
els for image processing have been created, for exam-
ple, anisotropy-di�usion PDE models by Perona and
Malik[10], anisotropy reaction-di�usion by Witkin and
Kass[11] and so on. These models not only focus on
image restoration or edge detection but also can be ap-
plied to texture analysis.

The reasons for many applications of PDE models to
image processing are rooted in the advantages of PDEs.
First, PDEs can satisfy such stability requirements for
image processing as locality and causality. Second, the
PDE formulation is natural in order to combine algo-
rithms. Another important advantage of the PDE ap-
proach is the possibility of achieving high accuracy and
stability aided by available numerical analysis.

It is noted that PDEs mainly possess determinis-
tic property that is always corrupted by uncertainties
in image data. Another problem is the inexibility of
choosing coe�cients and equation forms. A realistic
image model should integrate the known deterministic



characteristics which can be represented by PDE mod-
els and the uncertainties which can be represented by
MRF models[12].

2 Structure of PDE-MRF Model

A generic contextual constraint on the real world is
smoothness. It assumes that physical properties in
a neighborhood of space or in an interval of time
present some coherence and generally do not change
abruptly. Smoothness constrains are often expressed
as the prior probability of equivalently an energy mea-
suring the extent to which the smoothness assumption
is violated[13].

In GRF/MRF, the energy is the function of image
data. In order to capture the features in image, the
speci�c energy function should approximate the real en-
ergy of image to the maximized extent. Based on the
consideration of smoothness-prior assumption for tex-
ture images and the deterministic properties of PDEs,
a suitable form of energy function can be constructed
with part of PDEs such as partial di�erential operators
within potential functions.

The general energy function of a neighborhood re-
gion can be of such form as:
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the partial derivatives, and I is the image.

The selected functions for the operators are to en-
hance or suppress such texture properties as edges,
smoothness, roughness and so on. The part ff1(
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@y2 ) + f5(I)g is actually a part

of PDEs and its variation complies with PDEs. So this
kind of energy functions are deterministic.

The discrete form of the general energy function can
be deduced, for example, by operating the partial oper-
ators on the cliques of the second order neighborhood.
As a result, the discrete forms of these partial di�eren-
tial operators are the �rst order and second order �nite
di�erence, which reect the di�erence of gray level be-
tween neighboring sites.

Here we use both forward and backward �nite dif-
ference to discretize the partial di�erential operators
in order to comply with the neighborhood system.
In the second-order neighborhood, @I

@x is denoted by
(Ii;j+1� Ii;j) or (Ii;j�1� Ii;j) with respect to the hori-
zontal pair-site cliques; @I
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or (Ii�1;j � Ii;j) with respect to the vertical pair-site
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fore, a general form to represent f1(
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@x) and f2(
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all pair-site cliques is f1(Ii0;j0 � Ii;j) when f1 and f2
are selected as identical function (actually, f1 and f2
are often of same form due to operating on pair-site

cliques). Let (Ii�1;j � 2Ii;j + Ii+1;j) denote
@2I
@y2

, and

(Ii;j�1�2Ii;j+Ii;j+1) denote
@2I
@x2 , and then the discrete

form of VC is:

VC =
X

(i0;j0)2c;c2C
f1(Ii0;j0 � Ii;j)

+f3(Ii;j�1 � 2Ii;j + Ii;j+1)

+f4(Ii�1;j � 2Ii;j + Ii+1;j)

+f5(Ii;j): (2)

In (2), the second item and third one may be omit-
ted if functions f1; f3 and f4 are identical. But if the
functions are chosen di�erently, these two items play
an important role in the energy function and can not
be ignored. The conditional probability distribution of
PDE-MRF model is given by:

PfIi;jjNi;jg =
e�VCP
I0
i;j

e�VC
; (3)

where I 0i;j is any possible gray level and VC is denoted in
(2). Equation (3) reects the Markovianity. Therefore,
PDE-MRF model is an integration of PDE models and
MRF models.

Equation (2) is a very general energy function form.
It can be explained that it reects the gray level dif-
ference between neighboring sites whose variations are
shaped by potential function. By selecting some func-
tions for f1; f3; f4 and f5, we can obtain certain number
of MRF models including traditional MRF models and
new MRF models.



3 An MRF Model by PDE-MRF

Approach

Many traditional MRF models can be represented by
PDE-MRF model through selecting particular energy
functions. Here we use only MLL model as a typical
example for illustration. The reasons are as follows.

First, this model is used most frequently among all
MRF models due to its simple structure and e�cient
applications. Second, because its clique potential de-
pends on the type(size, shape and possible orientation)
of the clique and the local con�guration, its potential
is di�cult to be de�ned in mathematics in spite of the
ease of its description in semantics.

For cliques containing more than one site, the MLL
clique potentials are de�ned by

Vc =

�
�c if the sites of c have the same value
��c otherwise

(4)

In the discrete energy form of PDE-MRF model, let
f3 = f4 = f5 = 0 and f1 be of such function form
f(�) = w(�)(2�(�) � 1), we can get:

VC =
X

(i0;j0)2c;c2C
w(Ii0;j0 � Ii;j)(2�(Ii0;j0 � Ii;j)� 1);

(5)
where w(�) is a weight function with respect to clique
type, e.g., here we can let w(�) = �c, �(�) is delta
function and its value is 1 if �=0 otherwise 0.

If �Ic denotes (Ii0;j0�Ii;j) and �c denotes the weight
function w(�Ic), the above equation can be rewritten
as a simple form:

VC =
X
c2C

�c(2�(�Ic)� 1): (6)

So the MLL model can be composed according to
the above function of PDE-MRF model. In the next
section, the exponential model can be used to approx-
imate MLL model. Meanwhile, other MRF models
can be reconstructed from PDE-MRF model either pre-
cisely or approximately, which manifests the generality
of PDE-MRF model.

4 New Models for Textures

All the currently available texture models can not
model all texture images, and the capacity of each
model is limited. The complexity of natural textures,
therefore, forces researchers to explore new models to
precisely represent them. Here, we present several mod-
els obtained from PDE-MRF model by selecting certain
special functions for special applications.

4.1 Linear Model

If we let the functions f1; f3; f4 and f5 be constant and
the constant is the same with respect to common clique
type, then a simple model can be formed. This model is
linear, hence termed linear model. The energy function
is written as:

VC =
X

(i0;j0)2c;c2C
�i0;j0(Ii0;j0 � Ii;j) + Ii;j ; (7)

where �j0; �i0 and  are the parameters according to
clique type.

In the above energy function, two items
(Ii;j�1 � 2Ii;j + Ii;j+1) and �(Ii�1;j � 2Ii;j + Ii+1;j)
are omitted because functions f3 and f4 are
also constant like f1 and both items are lin-
ear combination of the �rst item. For example,
(Ii;j�1�2Ii;j+Ii;j+1) = (Ii;j�1�Ii;j)+(Ii;j+1�Ii;j).
Therefore, the addition of the two omitted items only
changes the parameters of the energy function without
any essential e�ect on the model structure.

Generally, the �nite di�erence only multiplied by
constants without any enhancement or suppression can
not capture texture features. Due to the simplicity of
this model, the textures it can model are limited.

4.2 Non-Negative Models

Take the functions f1; f3 and f4 as the absolute value of
the partial derivatives and assign constants as weights
to these functions with respect to clique type, and let
f5 = 0, we can get the energy function like:

VC =
X

(i0;j0)2c;c2C
�i0;j0 jIi0;j0 � Ii;jj

+jIi;j�1 � 2Ii;j + Ii;j+1j

+�jIi�1;j � 2Ii;j + Ii+1;jj; (8)



where �i0;j0 ;  and � are the parameters with respect
to clique types. Comparing with the linear model, we
preserve the second and third items because they can
not be decomposed into the �rst item but can mea-
sure the contrast among three neighboring sites which
is impossible to be captured by the �rst item.

This model is called as Non-Negative model. If the
selected function is quadratic function, we can form an-
other Non-Negative model. The non-negative property
of these models can describe roughness and smoothness
of texture.

4.3 Exponential Model

Let the functions f1 be f(�) = 2e�2�
2

� 1 and other
functions be zero, we obtain the exponential model. As-
signed weights to every function with respect to clique
type, the energy function can be given by:
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(i0;j0)2c;c2C
�i0;j0(2e

�2(Ii0;j0�Ii;j)2 � 1): (9)

Let �Ic denote (Ii;j0 � Ii;j), and �c denote the pa-
rameters �i0;j0 , the above energy function can be rear-
ranged as follows:
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�c(2e
�2(�Ic)

2

� 1): (10)

This form is similar to equation (6). So this expo-
nential model is much similar to the MLL model except
the minor di�erence that the discrete jump is replaced
by a continuous exponential function with nearly same
e�ects.

Assumed that the neighborhood system is the sec-
ond order and assigned the same weights to the same
clique types, the concrete form of (10) is:
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This energy function will be used in the followed ex-
periments.

4.4 Potential Model

Also we can use a potential function like f(�) = 1 �
1

1+(k�k=b)r as the form of f1; f3; f4 and f5. This kind of

functions f(�) owns a good property of enhancing the
edge information in texture image. The energy function
is formed as:
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where �i0;j0 ; , � and � are the parameters according to
clique types.

Models constructed in such way belong to poten-
tial models. By analyzing the characteristics of nature
texture images by statistical methods or other tools,
more suitable potential functions can be achieved and
be employed in the potential models.

4.5 Hybrid Potential Model

In each of the above models, we use only one potential
function for all partial di�erential operators. This way
to construct the energy function certainly limits the
capacity of the formed model for modeling textures.
Actually, each operator in the energy function of PDE-
MRF model plays di�erent roles, so the major function
of each operator should be enhanced by certain poten-
tial function. By this consideration, we want to con-
struct the energy function using two di�erent potential
functions. Models formed in such way are termed Hy-
brid Potential Model.

Let f1 be f(�) = 2e�2�
2

� 1, and f3; f4 and f5
be f 0(�) = log(cosh(�))(cosh is hyperbolic cosine func-
tion), the discrete energy function is formed as:

VC =
X

(i0;j02c;c2C
�i0;j0(2e

�2(Ii0;j0�Ii;j)2 � 1)

+log(cosh(Ii;j�1 � 2Ii;j + Ii;j+1))

+�log(cosh(Ii�1;j � 2Ii;j + Ii+1;j))

+�log(cosh(Ii;j)): (13)

In mathematics, f(�) = 2e�2�
2

� 1 is nonconvex
function that tends to result in sharp discontinuities,
while f 0(�) = log(cosh(�)) is convex function which of-
ten allows global optimization. So this model is hybrid
in two aspects: di�erent potential function forms and
di�erent properties of each function.



5 Experiments and Results

Based on the discrete energy function form of linear
model, we can synthesize texture images by sampling
from (3). The texture shown in image (a) of �gure 1 is
dominated by lower gray values and the brighter pix-
els do not cluster due to more weights on single sites.
Image (b) of �gure 1, also sampled from the linear
model with di�erent parameters from image (a), is al-
most noise, which shows the limited capacity of linear
model.

The second experiment is made in the case of ex-
ponential model. From the results shown in the �gure
2, its performance is the same as the MLL model. But
minor di�erence exists between the corresponding im-
ages modeled by exponential model and MLL model
respectively, since the selected function is continuous
and thus takes advantages over the discrete function
used by MLL model. This results in stronger capacity
of the exponential model than that of MLL model.

The third experiment is conducted on the condition
of using f(�) = 1 � 1

1+(k�k=b)r as the energy function

form. The image in the �rst row of �gure 5 is gen-
erated with b = 2 and r = 1:2. Based on more ex-
perimental results that are not shown in this report,
we �nd many of textures modeled by this model are
similar to those modeled by the exponential model.
The reason is that both functions f(�) = 2e�2�

2

� 1
and f 0(�) = 1 � 1

1+(k�k=b)r are nonconvex. From the

curves in �gure 3 and 4, the former function approx-
imates a linear transformation of the latter function,
e.g., f(�) � 1 � f 0(�) when b = 2; r = 1:2. This linear
transform can be aligned by setting corresponding pa-
rameter values in the energy function. Of course, some
new textures can be synthesized when r and b are set
to other special values such as b = 5; r = 5 and so forth.

The forth experiment is done by using the hybrid
potential model. Besides generating the textures mod-
eled by the exponential model, it can model new tex-
ture shown in the �rst row of �gure 5. The new features
captured by it is caused by combination of a noncon-
vex function and a convex function. It is not a �ction
that the capacity of this model can be strengthened
and greatly extended by using more that two potential
functions in the energy function.

Due to integrating both deterministic characteristics
such as edges and smoothness of PDE methods and
uncertainty of MRF models, the PDE-MRF model is a
generalization of MRF model.

6 Discussions and Conclusion

In the PDE-MRF model, the energy function is consid-
ered as the variation of energy distribution according
to the PDEs, which denote the way to achieve equi-
librium. If the energy converges, the conditional prob-
ability of MRF model reaches the maximum and tex-
ture pattern forms. Because the construction of energy
function in the PDE-MRF model is based on the as-
sumption of smoothness constrain, though permitted
some violations for texture patterns, and other con-
strains for texture such as regularization are ignored
or suppressed, PDE-MRF model can only model lim-
ited number of texture types. Another problem for
PDE-MRF model is how to relate the selected func-
tions to image features, for the form of functions has
great e�ects on pattern formation. To learn from the
histogram of nature images is one applicable way, but
other methods must be explored in the future. The fu-
ture challenge of improving PDE-MRF model includes
two aspects. One is to �nd which constrains are suit-
able for describing textures and how to apply them to
the energy function; another is how to learn the func-
tion forms in PDE-MRF model.

In a conclusion, the capacity of MRF models and
PDE models is limited to describe textures if they are
used independently, but the integration of the advan-
tages of both models can enhance their capacity greatly.
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(a) (b)

(c) (d)

Figure 1: Synthesized images by PDE-MRF model: (a)
function form is constant, and the parameters �1 =
�1; �2 = �1; �1 = �2; �2 = �2;  = 0; (b)function
form is constant, and the parameters �1 = 1; �2 =
�1; �1 = �1; �2 = 2;  = 2; (c)function form is absolute
value, an the parameters �1 = 1; �2 = 1; �1 = 1; �2 =
2;  = 1; � = 1; (d) function form is absolute value,
and the parameters �1 = 1; �2 = 1; �1 = 1; �2 = 2;  =
�1; � = �1

(a) (b)

(c) (d)

Figure 2: Synthesized images by exponential model: (a)
M(gray level)= 3, �1 = 1; �2 = 1; �1 = 1; �2 = 1, (b)
M = 4, �1 = 1; �2 = 1; �1 = 1; �2 = �1, (c) M = 4,
�1 = �1; �2 = �1; �1 = �1; �2 = �1, (d) M = 4,
�1 = �1; �2 = �1; �1 = 2; �2 = 2
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Figure 3: Curve of f(�) = 2e�2�
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Figure 4: Curves of f(�) = (1� 1
1+(k�k=b)r ) with di�er-

ent values of parameters: Upper-left with b=2, r=1.2;
Upper-right with b=2, r=2; Lower-left with b=0.5,
r=0.5; Lower-right with b=5, r=5

(a1) (a2)

(b1) (b2)

Figure 5: Synthesized images by Potential model and
Hybrid Potential model: (a1) by Potential model with
�1 = �1:4; �2 = �1:4; �3 = 0:3; �4 = 0:2;  =
1:4; � = 1:5; � = 0:8; (b1) by Potential model with
�1 = 0:3; �2 = 0:4; �3 = 0:5; �4 = 0:6;  = 1:2; � =
0:2; � = 2; (b2) by Hybrid Potential model with �1 =
�2; �2 = �0:1; �3 = �0:1; �4 = �0:1;  = 0; � = 0; � =
�1;(b1) by Hybrid Potential model with �1 = 2; �2 =
�0:1; �3 = �0:2; �4 = 2;  = �2; � = �2; � = 0
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