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Abstract

This paper addresses the problem of determining which 3D
shape is present, and more importantly, the dimensions of
the shape in a scene. This is performed in an active vi-
sion system because it reduces the complexity of the prob-
lem through the use of gaze stabilisation, choice of foveation
point and selective processing by adaptively processing re-
gions of interest. In our case only a small number of equa-
tions and parameters are needed for each shape. For exam-
ple, a container has width and height. These are incorpo-
rated into functional descriptions of the shapes.

1 Introduction

A major objective of computer vision has been, and still con-
tinues to be, 3D object recognition. We live in a 3D world
and though many useful applications of computer vision can
avoid 3D object recognition, it is still widely regarded that
if it is solved, then many applications are solvable. 3D ob-
ject recognition has been pursued using a small number of
basic techniques. Ignoring the use of shape from shading,
stereo or motion and concentrating on a single camera and
monochrome images, there have been three main methods:
recognition by components[3], 2D appearance based sys-
tems, and 3D model based systems. In the 2D approach,
a number of 2D views of an object are learnt and com-
pared with the unknown image. Hopefully, the most appro-
priate view of the correct object will match best in some
sense. Such systems use viewspheres [8] and characteristic
views [2] to determine the optimum set of views of each ob-
ject and use well known 2D matching and registration meth-
ods. In the 3D model based approach, a 3D model is ma-
nipulated to match the 2D projection of the model to the

unknown image, usually by some form of gradient descent.

Many proposed 3D object recognition systems use a
combination of the two techniques with 2D views serving
as an index into most probably views of 3D objects. 3D
matching is then used to refine the matches and firm up the
hypotheses. Ultimately only one view of one object should
be determined as a match.

All the above techniques suffer greatly from complex-
ity when many objects have to be considered. The database
consists of many accurate models and is complex if articu-
lation, deformation and variations in shape are allowed.

An alternative approach is to rethink exactly what are the
tasks of a 3D object recognition system. One is to consider
function. The shape of a table is immaterial as long as it can
satisfy the current goal, say, to support some object. This
invokes ideas such as a flat surface, a certain height above
the ground, stability and support. A cup is something that
can contain a liquid and is of a suitable size with shape not
being that important.

In this paper a technique is proposed that can recog-
nise various functions. As such it deals with various shapes
of objects. It can be compared with other techniques that
can recognise static and rigid objects, or dynamic and de-
formable models, usually sequentially i.e. one at a time.
The technique we propose can deal with parameterised mod-
els of various shapes defined by function. Shape varies as
each function is parameterised e.g. containers have width
and height. All models are treated simultaneously in par-
allel and the best chosen based upon minimising the error
between hypothesised models and the sequence of images
in an active vision system. This paper describes (i) how the
models related to the objects in the scene are initially de-
termined and (ii) the strategy used to improve the selected
hypotheses. The strong point of this strategy is that the re-
quired parametric models and their associated parameters
are determined in a dynamic manner. As each image is cap-
tured, the information obtained from it will be used to update
the parameter values within the parametric models. Thus as



more images are captured, the stronger the belief that the
parametric models and their associated parameter values are
correct.

The estimation of the parameters in the parametric mod-
els involves moving the camera in a controlled manner. This
is necessary as it is not possible to estimate the size of an ob-
ject from an intensity image without any prior knowledge.
The object could actually be quite small in 3D but if the
camera is very near the object then this object would appear
to be very large in the image. The reverse is also true.

An object is described in terms of its functionality (i.e.
the suitability of the object to fulfil a particular task). When
an object category is described using a functional represen-
tation scheme it is independent of any geometrical or struc-
tural properties thus avoiding the complexity issues associ-
ated with 3D object recognition systems which use models
based on shape. In a function based approach, specific ob-
ject models are not stored in a database. Rather, an object
is defined by its potential to fulfil a particular function such
as the ability to contain. Freeman and Newell [4] were the
pioneers in work relating to form and function.

2 Methodology

A four stage methodology has been discussed in Lamet al
[7] and this paper deals with the third stage: determination
of the parametric models and the associated parameters.

The methodology relies on determining and tracking
a foveation point (keeping it registered), determining the
camera-to-foveation point distance and the related paramet-
ric models. Details regarding the choice of features to
foveate on as well as the various parametric models have
been discussed in Lamet al [7].

An issue to consider is the camera motion and defined
camera motions are used in this strategy [7]. In this pa-
per, the camera is moved in a circular trajectory in a vertical
plane about the foveation point (see Figure 1). This reduces
the complexity of analysis as the CFP distance is then kept
constant.

2.1 Parametric Models

Given that we know the focal length and orientation of the
camera, the features of the object can be tracked with a
model using the distance of the object to the camera and
the relevant spatial information between the foveation point
and the feature point. This requires estimates for both the
CFP (camera-to-foveation point) distance and the associated
parameters. As the camera changes its viewpoint, the rela-
tionship between the foveation point and the feature point
currently being tracked in the image plane changes as a func-
tion of the camera’s position. The camera moves in a known
controlled manner and thus this relationship can be com-

puted and predicted. According to the theory explored by
Ballardet al [1], the representation of the products of early
vision is in an object-centred coordinate frame of reference
with the foveation point at the origin of this frame. In addi-
tion, knowledge of self motion and the foveation geometry
will allow an active vision system to compute spatial infor-
mation about surfaces relative to the foveation point. The
computation becomes less complex as the coding of this ge-
ometric information will be in terms of the object-centred
coordinate frame of reference.

We have previously described [7] the parametric models
for three canonical cases which can be applied to describe
all situations. Only the first canonical case is described in
detail in this paper: both the foveation point and the feature
point being tracked are stationary points. However results
for other cases are presented in the results in Section 3. Fig-
ure 2 shows two points, the camera is foveating onand
tracking . The camera moves along a circular trajectory
with respect to and is currently at point . The points

and are projected onto the image plane atand
respectively with forming the optical axis. The cam-
era now moves to . Now the points and are pro-
jected onto the image plane at and respectively. The
CFP distance is and the focal length is

. The value of , the distance between the
projections of and on the image plane at the different
camera positions is given by

(1)

where and . Hence
the distance can be computed from Equation 1 for both of
the camera positions. The deviation of the measured value

from this theoretical value for each camera positionis
given by

(2)

If the model used is correct then the predicted value of
should match the measured value i.e. . If this is not
the case, then the model is wrong or the parameters of the
model have been incorrectly estimated.

The parametric equation is given by:

(3)

where is the focal length, is the camera-to-foveation
point distance, is the vertical height difference between
the foveation point and the current point tracked,is the
horizontal distance between the foveation point and the cur-
rent point tracked, and is the angle between the line join-
ing the viewpoint and the foveation point and the horizontal
plane.

Depending on the value of , three situations can occur:

1. The points and are on the same horizontal plane.



2. The point is above point .

3. The point is below point .

If =0 then the first case occurs, if then the third
case occurs, and lastly if then the second case oc-
curs. The case for enables the verification that the
foveation point and point being tracked are on the same hor-
izontal plane. This allows for the determination of the func-
tion flatness. Similarly, if the conclusion is that the
foveation point and the point being tracked are not on the
same horizontal plane and thus fail to provide the function
flatness.

2.2 Parameters of Models

The functionflatnessrequires only one parametric model
and in this primitive there is only one parameter (i.e.)
that is required to be estimated. Similarly for the func-
tionsvertical-ness, spherical-ness, cylindrical-nessandroll-
ability, only one parametric model is involved and within the
parametric model only one unknown parameter needs to be
determined (discussed in Lamet al [7]). However, tracking
one feature may be insufficient to confirm that the object in
question possesses a specific function such as the function
flatness. The more features found on the object which can
be fitted to the general function primitive (i.e. in the case of
flatness, and ) the stronger the belief that the
object fulfils the function.

For a complex function such ascontainment, two para-
metric models are required. In the first parametric model,
one unknown parameter () is to be determined and in the
second parametric model there are two unknown parame-
ters ( and ) involved. If the recognition task involves
a complex object, then the recognition task may be carried
out by parts or by functions. For example, if the task is to
recognise a cylindrical container then three parametric mod-
els are needed, two to verifycontainmentand one to verify
the cylindrical shape. Again the more features tracked the
greater the confidence that the particular hypothesis is cor-
rect.

Although a function may involve a number of paramet-
ric models, in this paper the maximum number of unknown
parameters in the parametric models considered is two.

2.3 The Method Used to Determine the Para-
metric Model

The images are initially processed to extract edges, corners
or other features. The local energy edge detector [9] was
used with a mask for edge detection. As the analy-
sis of these images is based on the knowledge of the camera
motion, feature points in the plane in which the camera is
moved encompassing the foveation point, are obtained. Ini-
tially all the parametric models are in contention and are

considered simultaneously. All the detected feature points
have to be checked to verify which of the parametric models
will best relate to the object in the scene. The combination
of feature points from a sequence of images is large form-
ing a large search space requiring much computation. Thus
there is a need to determine an efficient solution.

With some initial estimates, the method of recursive least
squares (RLSQ) is applied to a series of images in a se-
quence so that a more accurate estimate of the parameters
can be obtained as the vision system acquires more images.
The method of RLSQ is mathematically equivalent to that
of Kalman filtering except that the parameters being esti-
mated are not a function of time [5, 10]. The only problem
is that the function primitives are not linear and need to be
linearised.

One or more images may be use in the updating process
(currently one image is used). The images may be captured
one at a time and each time a new image is obtained, the
information from the image is used to update the parameter
values as well as the belief in having obtained the correct
parametric model.

2.3.1 Obtaining Initial Estimates of the Various Para-
metric Models

For simplicity, this discussion first considers solving for the
unknown parameters in a parametric model that has only one
unknown requiring only one image. For each feature point
found, its distance from the foveation point 1 is calcu-
lated and substituted into the parametric model along with
the CFP distance (), the focal length () and the tilt of the
camera ( ). For example, in the function primitive used for
verifying the functionflatness, there is only one unknown to
be solved (i.e. ):

(4)

As there are a number of feature points within an image,
a number of values for will be obtained from one image
(each associated with one value of F) and only one of these
values will be correct. It is not possible to know which of
these is correct from one image and thus a number of images
from different viewpoints are required. For each of these im-
ages and for each of the values of Fin each of the images,
there are associated values of. A strategy is required to
determine which of these initial values is the correct value
of .

However, if two or more unknowns are to be determined
within a parametric model then two or more images would

1Each image is processed only in the plane, in which the camera is
moved and which encompasses the foveation point. The symbol Fin this
paper denotes the distance of thej feature from the foveation point within
plane in the i image.



be required. If there are two unknown parameters, then it
is necessary to obtain values of Ffrom a pair of images.
If feature points are found in one of the images andin
the other image then the total number of possible correspon-
dences that need to be considered is. The more unknown
parameters within a parametric model to be solved, the more
images are required and the greater the numbers of ways to
combine the values of Ffrom these images.

2.3.2 The Proposed Strategy Using the Recursive Least
Squares Method (RLSQ)

The recursive least squares method (RLSQ) is applied to up-
date the values of the parameters for each new observation.
The advantages of this method are: (1) there is no need to
store past observations, and (2) the estimate obtained by this
method takes into account the effect of past observations.

The initial estimates of the parameter values within the
specific parametric models are obtained in the manner as
described in Section 2.3.1. As a small number of images
are used, the belief that the obtained value(s) related to the
parametric models is low. Each unknown parameter in the
parametric model has a variance associated with it. If the
belief of having obtained the correct value is low, then the
associated variance of the unknown parameter is high.

A dynamic window is used for searching for correspon-
dence among feature points, where the size and the position
of the window are determined by the information obtained
from each step in the updating process. Based on the initial
estimates of the parameters, the specific parametric model,
the camera parameters, and the covariance matrix associated
with the parameters, the size and the position of the window
for the next image in the sequence are determined. Feature
points found within that window will be considered as the
most likely candidates and thus most of the feature points in
the plane in which the camera is moved are eliminated. The
candidates are ranked using the residual values returned by
the RLSQ method. The best candidate is the one with the
lowest absolute residual value. Initially, the best candidate
will be used to update the values of the parameters. The
updated value will again be used to calculate the position
and size of the dynamic window for the next image to be
captured. The whole process is repeated as new images are
captured.

However, if no feature points are found in the new image,
the next most likely candidate from the previous image is
used to recalculate the values of the parameters. Using the
recalculated parameter values, the position and size of the
dynamic window for the image are also recalculated. Again
the strategy will look for feature points within the dynamic
window.

The strategy is able to handle a situation where wrong
feature points have been selected. When this happens, the
values of the estimated parameters will diverge. The next

point on the ranked list will be used to recalculate the val-
ues of the parameters. These values will again converge to
the correct values in subsequent images if the correct fea-
ture points are selected. The ranking of the feature points
as mentioned earlier uses the residual values obtained in the
RLSQ method. The residuals are the differences between
the predictions and observations and are used to alter the es-
timates of the parameters. This implies that the observations
that are closely related to the current parametric model will
have small residuals and thus will be ranked first.

The size and position of the dynamic window is deter-
mined in the following manner. Using the covariance matrix
of the parameters, the standard deviations associated with
each of the parameters are obtained. Based on a 95% confi-
dence, the range of values of the particular parameter is de-
termined. Then this range of values is used to determine the
size of the dynamic window. The minimum and maximum
values of the parameter is used to predict the location of the
tracked feature points in the subsequent image. The abso-
lute difference between the two predicted locations of the
tracked feature points is the size of the window. The cen-
tre of the window corresponds to the most likely predicted
location of the tracked feature point.

As more images are processed, the belief that the param-
eter values are correct increases and the variance associated
with the parameter values decreases. The dynamic window
which is calculated based on the variances associated with
the parameters will also become progressively smaller. The
minimum window size will be one pixel in height although
this implies little inaccuracy in feature detection. Hence in
practice, a minimum size window of a few pixels (e.g. five
pixels) is chosen. When the parameter values differ by a
small number in consecutive steps of the updating pro-
cess, it is then considered that we have obtained the values
of the parameters of the object and these values are then used
in the tracking process to confirm whether the object fulfils
the required function. In the tracking stage, as new images
are obtained, the parameter values will still be checked for
consistency.

3 Experimental Results

The action and movement of the camera are modelled using
physical modelling (i.e. raytracing) so as to avoid the issues
of active control of the camera [11]. Raytracing is accept-
able as an image formation technique as we are mainly in-
terested in the geometry and not the camera control issues or
generating perfect representations of the real world. Using
raytracing, we can accurately control the parameters of the
objects and parametric models and repeat experiments un-
der different known conditions. This is much more difficult
when using real cameras and robots. To demonstrate the ef-
fectiveness of our strategy, some real images are used in the



determination of the parametric models and their associated
parameters.

If prior knowledge of the task or context (top-down or
task-driven) is available, the task is made easier as only a
specific parametric model needs to be considered. As the
parametric model is known, knowledge concerning the num-
ber of parameter values to be determined is also known. This
paper deals with the case where there is no available knowl-
edge of the context (i.e. bottom-up or data-driven) and thus,
all the parametric equations currently of interest are to be
considered. The number of unknown parameters that need
to be considered here would be equal to the maximum num-
ber of unknown parameters among the parametric models
under consideration.

The parametric models and their associated parameters
have been determined successfully under the following two
conditions: (1) feature points have been consistently found
at the location predicted by the models in a number of im-
ages, and (2) the values of the associated parameters have
been consistent. The checking of whether consecutive val-
ues of each parameter is less than some toleranceis only
carried out after the updating process has been repeated two
to three times. This is to allow for the fact that the initial
value of the parameter value(s) may be very inaccurate. The
RLSQ method can converge quite quickly to a value close
to the expected value.

The tolerance value of 1.0 is used to eliminate the other
parametric models quickly. A value of 1.0 is chosen because
the values of the associated parameters change by quite large
values in the incorrect parametric models. This is indicated
in the experimental results. To illustrate this process, vari-
ous test objects were used. The aim is to obtain the correct
parametric models that pertain to the object. Since there is
no prior knowledge, a number of parametric models will be
considered initially. These are represented by the following
symbols: , and . Listed below are the interpreta-
tions of these symbols:

represents the case of the tracked feature point be-
ing on an occluding boundary. One unknown parame-
ter is associated with this model.

represents the case of the tracked feature point being
on the same horizontal level as the foveation point. One
unknown parameter is associated with this model.

represents the case of the tracked feature point be-
ing some horizontal distance as well as some vertical
distance below the foveation point. Two unknown pa-
rameters are associated with this parametric model.

Using the first two images of the sequence, the initial
estimates of the parameters will be determined using the
method of simultaneous equations. Two images were used
as the maximum number of parameters in the parametric

models is two. Values of F are obtained from the images
and substituted into each of the parametric models resulting
in a number of sets of simultaneous equations. The result
of this initial process is a list of possible initial estimates for
the parameters. As these values are determined from only
one (or one set of) image(s), the variances associated with
the unknown parameters are high. Every value in this list
will be used as a starting value in the process of obtaining
the parametric model and its associated parameter values.

The next image is then obtained. Using the values of
F and all the associated camera parameters, the parameter
values associated with each of the parametric models under
consideration is updated. The process of capturing an image
from the next viewpoint and then using information from
the image to update the parameter values of the parametric
models is repeated for a few images (normally two to three).

The process described will be repeated for each set of ex-
periments described below. Various test objects were used.
In addition, the investigation also uses real images to evalu-
ate the performance of the strategy.

3.1 Parametric Model and the Associated Pa-
rameter Values for an Hemispherical Ob-
ject

From the initial processing, two possible values of 49.6 and
1562.2 are obtained for the two parametric models with only
one unknown ( and ). Values of 49.6 and 50.0 are the
values for the model with two unknown parameters ().
All of these will be considered as the initial estimates for
the parametric models in contention.

Table 1 illustrates the changing parameter values of the
two initial values that are updated as new images are ac-
quired. In the case where the initial value is 1562.2 units,
both the function primitives and drop out of con-
tention after one image and thus the only function primitive
that remains is (see the column labelled as Case 2 in Ta-
ble 1). Subsequent processing will show that the function
primitive is out of contention after the second image be-
cause no feature points can be found in the dynamic window
in the subsequent images.

When the initial value is 49.6 units, there is no updated
parameter values for the case of as new images are ac-
quired as no feature points are found within the dynamic
window and the associated parametric model drops out of
contention. As the initial belief is low, the size of the win-
dow will be large. Thus if no feature point can be found
within the window it can be inferred that the parametric
model in question is not the correct model.

However, it is possible that the feature point may be lost
in that particular image owing to errors in processing (e.g. in
edge detection and corner detection). Thus the subsequent
images will also be checked to see if there are feature points
that will fit the failed models. This form of checking will



only be carried out with the first few images which enables
the confirmation that the particular model definitely is not
related to the objects in the scene.

Notice that the value of the parameter for the function
primitive is consistent compared to that of the function
primitive . Thus the function primitive will be selected
as the most likely model after three images are used. As new
images are acquired, the selected function primitive and its
associated parameter values are used to predict the location
of features and track them. If features from a large num-
ber of subsequent images can be tracked using this function
primitive and its associated parameter values then the be-
lief that the model is the correct one can be strengthened.
Note that the confirmation of whether the parametric model
in question is correct occurs in the tracking stage [7].

3.2 Parametric Models and the Associated
Parameter Values for a Cup

Using the images illustrated in Figure 3, the list of possible
initial values of the parameter values are obtained. Table
2 shows the result of using one of the initial values as the
starting point and using the images shown in Figure 3. No-
tice that in this set of images, the internal bottom edge and
the top opening of the cup are present. Note that the cup is
80 units high, the internal width is 77 units and the exter-
nal width is 80 units. As depicted in Table 2, at the end of
processing the fourth image, there are still two parametric
models in contention. One is for the top edge and the sec-
ond is for the bottom internal edge. The parameter values
of both the parametric models for consecutive images are
varying less than the tolerance and thus is considered to be
consistent and correct.

3.3 Parametric Models and the Associated
Parameter Values for a Box Using Real
Images

Some real images were used to investigate the performance
of the technique. Using the same processing as before, the
changes to the parameter values in each of the function prim-
itives under consideration are shown in Table 3 as new im-
ages are processed. One of the initial values of the param-
eters to be considered was 98.3 units. Again the function
primitive was out of contention after the first image in
the sequence was processed. By the end of four images, two
function primitives are still under consideration. This is rea-
sonable as can be seen from the images. The two function
primitives are for the rear top and the internal bottom edge
of the box. The images in Figure 4 show the location of the
tracked features using both of the function primitives under
consideration. Their associated parameter values are shown
in Table 3.

4 Improving the Hypothesis by Using
Multiple Slices

The main features used so far have been individual edge
points. As only one or two points are involved, the hypothe-
sis involving a specific model would be a weak one without
stronga priori assumptions about the objects. One of the
ways to increase the confidence in the hypothesis is to use
a number of sets of edge points simultaneously. The more
edge points that are tracked and found to fit the general form
of the parametric model, the more reliable the determination
of the decision concerning the current hypothesis.

The process of tracking multiple feature points has been
discussed in Lamet al [6]. An example of this is shown
in Figure 5 which illustrates the result of tracking multiple
feature points using seven 1D slices across the images. The
foveation point is the single thick white cross in the centre
of the image. The feature points being tracked are marked
with thin white crosses.

5 Conclusion

This paper has described a technique for recognising a 3D
shape given parametric models describing function. As a
consequence the dimensions of the object are determined.

The strategy was able to select the correct parametric
model as well as obtain the associated parameter values in a
bottom up approach when images of different objects were
used.

The RLSQ method has been used as it allows, via the er-
ror measures, the use of dynamic search windows to reduce
the search space when looking for correspondence between
features in adjacent images in time. Results on different ob-
jects, both simulated and real, with and without Gaussian
noise, demonstrate the technique works and chooses the cor-
rect model quickly in all cases. Extensions to the methods
described in this paper include using different features, and
testing on different objects.
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Figure 1: Camera moves in a circulatory trajectory in a ver-
tical plane about the foveation point (from [7]).

T x  y1  1

θ

θ − ψ B’
f

x  y
3  3

ψ

FT=F’T=R

x

F

d
T’’

x  y
2  2

B

B’’

F’

d

z

T’

Figure 2:Foveating on a stationary feature point and tracking
another stationary feature point (from [7]).

Image Hypothesized Inferred Values of
No. Parametric Model Associated Parameter

Case 1 Case 2
0 ALL 49.6 1562.2

49.6
49.6, 50.0

1 52.6
32.0 1610.1

2 53.2
14.3

3 52.7
5.7

Table 1: A comparison of the values of the parameter associ-
ated with each of the parametric models, calculated as each
image is obtained. The parametric model with a consistent
value for its parameters is the parametric model that repre-
sents the object in the image.

(a) (b)

(c) (d)

Figure 3: Edge-detected images of a cup with the internal
bottom edge that are used to determine the function-based
parametric models and their associated parameter values.



(a) (b)

(c) (d)

Figure 4: Images illustrating the feature points selected us-
ing the parametric model and its associated parameter values.
The cross in the centre of the image indicates the foveation
point on the object. The selected feature points are marked
by the other crosses.

(a) (b)

(c) (d)

Figure 5: A sequence of images showing the tracking of fea-
ture points on a cup. The technique of multiple slices was
employed. The thick cross indicates the foveation point. The
thin crosses indicate the feature points tracked.

Image Hypothesized Inferred Values of
No. Parametric Model Associated Parameter
0 ALL 80.3

80.3
80.3, 83.4

1
79.1

80.4, 83.5
2

79.3
79.1, 82.3

3
79.0

78.1, 81.3
4

79.0
77.7, 80.9

Table 2: A comparison of the values of the parameter associ-
ated with each of the parametric models, calculated as each
image is obtained. The parametric model with a consistent
value for its parameters is the parametric model that repre-
sents the object in the image.

Image Hypothesized Inferred Values of
No. Parametric Model Associated Parameter
0 ALL 98.3

98.3
98.3, 50.4

1
106.5

96.3, 40.3
2

104.6
95.6, 41.8

3
102.7

99.4, 40.7
4

102.5
101.8, 40.9

Table 3: A comparison of the values of the parameter(s) as-
sociated with each of the parametric models, calculated as
each image is obtained.
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