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Abstract retrieval has been studied recently for improving efficiency
and robustness. For structural organization of large image
Efficient and robust information retrieval from large imageqatapases composed of boundary contours of objects, Del
databases is an essential functionality for the reus@impo [2] and Mokhtarianet al. [9, 10] apply the
manipulation, and editing of multimedia documentssyrvature scale-space approach to feature indexing, and
Structural feature indexing is a potential approach tage|groff [18] proposes a method for image indexing with
efficient shape retrieval from large databases, but it ihe modal matching [20]. Furthermore, the structural
sensitive to noise, scales of observation, and local Shaﬁﬁiexing by Stein and Medioni [19] copes with noise and
deformations. To improve the robustness, shape featygRa| shape deformations by extracting shape features from
generation techniques are incorporated into structuraleyeral versions of polygonal approximations of boundary
feature indexing. The feature transformation rulegontours. However, there are some technical questions
obtained by an analysis of some particular types of Shaﬁ‘aainst these approaches. The curvature scale-space
deformations are exploited to generate features that can Rgsthod requires a large amount of computations for
extracted from deformed patterns. Experimental trials Witgmoothmg boundary contours with a number of different
large image databases of boundary contours show that t@ﬁpport sizes. Sclaroffs method requires the user to
feature generation significantly improves robustness arg_becify prototype shape sets spanning the shape space
efficiency of shape retrieval. adequately, but this operation is obviously difficult for
end-users. Stein-Medioni's method degrades the efficiency
by generating a number of polygonal approximation from
1 Introduction the boundary contours.
Efficiency and robustness are important, but sometimes
Efficient and robust information retrieval from large imagéncompatible criteria for performance evaluation. The
databases is an essential functionality for the reusmprovement of robustness implies that the retrieval should
manipulation, and editing of multimedia documents [6, 15{olerate certain types of variations and deformations for
Images have several components in terms of informatiomages. Obviously, it may lead to inefficiency if some
representation, such as color, texture, and shape [3]. Catpute-force methods are employed such as generating
and texture are mathematically and physically tractablgarious images with a number of different parameters. A
and their properties and variations can be representedkisy to achieving both efficiency and robustness is through
well-structured forms by some statistical methods [17]. Oa compact and well-structured representation of images
the other hand, shape is another essential component, thidit tolerate variations and deformations.
shape analysis and representation are still difficult research In this paper, an efficient, robust method is presented
subjects in spite of intensive research carried out f@sr shape retrieval from image databases composed of
decades. Feature indexing techniques [1, 5] are potentundary contours of objects. The method is mainly based
approaches to improving efficiency in shape classificatiopn an indexing technique for structural features, along with
and retrieval. However, they are known to be sensitive tpvoting technique for ranking model images in terms of
noise and shape deformations, and their performance grtracted features from the query image. In particular,
terms of classification accuracy is degraded drasticalghape feature generation techniques are incorporated into
even due to small changes of shapes [4]. structural indexing to improve the accuracy and robustness
Efficient and robust retrieval from large imageof shape classification against noise and local shape
databases by shape [8] is a challenging problem, and shap@sformations [14].
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structural  representation of curves by quasi-
convex/concave features along with quantized-directional
features [11, 12] is outlined. In Section 3, we describe the
transformation rules of structural features to generate
features that can be extracted from deformed patterns
caused by noise and local shape deformations. In Section 4,
@ ® © @ we describe a shape retrieval system based on the proposed

method for structural indexing with feature generation

Figure 1. (a) a closed contour with a polygonalmodels. Furthermore, the system is demonstrated with

approximation, (b) quantized-directional codes whelfrge image databases, and the proposed method is
N=4, (c) sub-segments whemN =4, (d) segments Validated by systematically designed experiments with a
when N=4. large number of synthetic data. Section 5 is the conclusion.

The design of algorithms and data structures proceeds
in the following steps: 2 Structural representation of closed
(1) Representation: Based on convex/concave structures contours
incorporating quantized-directional features along

boundary contours, a compact shape representatipRe structural representation of closed contours [11, 12] is
with simple, efficient computation is explored so thagytiined in this section, based on quasi-convex/concave
the contours can be described by a few componenigctures along contours incorporatingN uantized-
with rich features. _ directional features is a natural number). As shown in

(2) Feature transformations: Features based Qfig. 1a, the closed contour is first approximated by a
convex/concave structures are transformed by NOiSSblygon. On a 2-D plane, we introduc -axes together
scales of observations, and local shape deformatioRgith 2N quantized-direction codes. For instance, when
Therefore, to cope with such deformations, any =4 eight quantized-directions are defined along with
analysis of feature transformations is carried out Witthe four axes as shown in Fig. 1b. Based on theseaxes
respect to some particular types of shapggether with N quantized-direction codes, the analysis
deformations, leading to transformation rules ofs carried out hierarchically.
structural features composed of a small number of A curve is decomposed intub-segmentat extremal
distinct cases. Features that can be extracted frifBints along each of theN -axes. Fig. 1c illustrates the
deformed patterns caused by noise and local shaggcomposition of a contour shown in Fig. 1a into sub-
deformatloqs are generated by applying thgegments whenN = 4. For adjacent sub-segmeatandb,
transformation rules to the features extracted from t'%%ppose that we turn counterclockwise when traversing
Image patterns. o ~_ them froma to b, and the joint o andb is an extremal

(3) Model database organization by structural mdexm?r,'oim along the axes toward the directions

For efficient manlpu[atlon of a large number Ot(j’j +1(mod2N),.. k). Then, we write the
models, a large table is constructed for a model set by

assigning a table address to a feature and storing theemcatenation of these two sub—segmentsaﬁﬂjf - b.

a list of the model identifiers with the corresponding-or instance, the joint of sub-segmeHtandG in Fig. 1c
feature. The generated features by the transformatign an extremal point along the three axes toward the
rules are also used to cope with featurgirections 3, 4, and 5. Therefore, the concatenatioH of

transformations due to noise, scales of observatiogﬁdG is written as H 0P G . In this way, we obtain

and local shape deformations. . .
. . ) . the following concatenations for the sub-segments
(4) Retrieval by voting for models: In the retrieval, from. S
: illustrated in Fig 1c.
the features extracted from the query image, features a 55 & A7
are also generated by the transformation rules. Model AOII'- B, BOO- C COO- D DOO- E
identifier lists are retrieved from the table addresses g%, F FOM'. 6, HOR. G, HOA'- I,
corresponding to the generated features, and voting is

1 2 3
carried out for each model on the lists. The query 0¥ 3, 308 K KOBS L LOB% M,

image is classified efficiently by selecting out some AOfMo M
models according to scores based on the number @ |inking local features around joints of adjacent sub-
votes. segments, some sequences of the following form can be

This paper is organized as follows: In Section 2, gonstructed:
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Feature Model Identifier List center (Xc, yc) and size (W, H) of its bounding box.

Furthermore, in the structural indexing and voting

3 j i 1 1 ; 2’9725242’829;37 oL processes, these eight parameters are quantizedLinto
o o . : ‘ : intervals, treated as integers 0 through-1. Therefore,
features of a segment are described by ten integers:

(5,6, 2,3, l 3,2,1,1,1) 19, 289, 283',“584, 739, 937, P97 (r,d, [L Xs Q0L B/ s QL X 0L £ -

Figure 2. Model database organization by structural O e JO-Be OO0V OOHD
indexing. Each table item stores a model identifier list  Adjacent segments are connected by sharing the first
with the segment feature corresponding to the tablgub-segments or last ones of the corresponding sequences.
index. These two types of connection are denoted®¥ T and

SL T, respectively, for two adjacent segmestsind T.

L By J j i) j i . .
3, DD o DD ... 08 FAD- &, (1) For instance, connections are denoted by
A part of the contour corresponding to a sequence of thj§ln St %ﬂ $1 Sfor the four segments shown in Fig.
form is called ssegmentFurthermore, the starting point of

the segment is defined as the end pointagf, and the .
In the sequel, we assume that segments are indexed

ending point is as the end point @,. When a segment is sequentially so that the interior of the image pattern or

traversed from its starting point to its ending point, onebject lies on the left side.

turns counterclockwise around any joints of sub-segments.

The following segments, as shown in Fig. 1d, are

generated from the 13 sub-segments shown in Fig. 1c: 3  Structural indexing with feature

S: A0 M, generation models

s, AD# . BOPFP. cof®. pom'-
Features of each segment extracted from the contour curve
EofP- FOb- G, are described by 10 integers. A large table, as illustrated in
S, HO .G Fig. 2, is constructed for a model set by assigning a table
address to a feature and storing there a list of the model
Sy HOB - 108~ Jod KOB%- LOB% M. identifiers with the corresponding feature. Furthermore,

A segment is characterized by a pair of integérsl) , classification of the query image is carried out by voting
For each model on the lists stored at the table address

characteristic numbersrepresenting the angular span Ocorrespon ding to each segment feature.

the segment ans the direction of the first sub-segment. However, the features are sensitive to noise and local
r= Z (JQ 1)—j ( O)) n shape deformations, and therefore, the correct model does
’ "/ mod2N not necessarily receive many votes as expected for the

1=1 . .
n-1 ideal case. Furthermore, when only one sample pattern is

2 (j(i +l0)—jﬁ ])) +2 (2) available for each class, statistical learning techniques from
T mod2N training data cannot be employed for obtainagriori
d= j(LO knowledge and feature distributions of deformed patterns.
To cope with these problems, we analyze the feature
The characteristic numbers are given {8,7), (8,3, transformations caused by some particular types of shape
(4,3, and (6,7), respectively, for the four segmentsdeformations, constructing feature transformation rules.
shown in Fig. 1d Based on the rules, we generate segment features .that can
Based o'n tﬁe coordinate system defined by tbe extracted from deformed patterns caused by noise and
. : . Igcal shape deformations. In both processes of model
bound|_ng box of the contour (the. upright re_ctangle U3 attabase organization and retrieval, the generated features
enclosing the shape) such t_hat its cent_er '?‘ located b?/ the transformation rules are used for structural indexing
(0509 and the length of its longer side is 1, eacfpy voting, as well as the features actually extracted from

segment is associated with eight parameters describingdtstours.

size and position: location of its starting pOi(“s,Ys)y The following three types of feature transformations
. . ) . ) are considered in this work:
location of its ending point(xe,Ve), location of the (1) Change of convexiconcave structures caused by

330



{si.$.%. 5 g tosegmentSands’
with the characteristic numbe{7,6) as

shown Fig. 3b.

In general, rules can be introduced for
generating characteristic numbers from a
segment block (a set of consecutive
segments).

RULE 1: From a segment block, a
characteristic  number is generated
according to the following rules:

(1) From a segment block

{S‘i:lZ-.-,n; Sin gl...L §},

where n is odd, with characteristic

© numbers (r;,d;), a characteristic
Figure 3. (a) Part of contours similar to one another in terms of global n
scales, (b) editing structural features by merging segment blocks, (c) number <Z (_ 1)i+1ri !dn> is
transformations of characteristic numbers of segments by small rotations. =i

_ o generated if ry_;—rg +ry,,=2
perturbations along normal directions on the contour

and scales of observation, along with transformations ¢, ; =12,..,m/27and - (_ 1)i+1ri 59

of characteristic numbers (the angular span of the i

segment and the direction of the first sub-segment). 5y o a segment block
(2) Transformations of characteristic numbers caused by

small rotations. {S‘i=12,...,n;51i gh...h §}, where n is odd,
(3) Transformations of size and location parameters due

to noise and local deformations. with characteristic number$ri ,di>, a characteristic

We describe these three types of transformation in the rest n i
of this section. number (-1)"r d, is generated if
1=1
3.1 Transformations of convex/concave M1 =l ¥r3,922 for i=12...m/2] and
structures A

(- 1)i+1ri >2.

=1
The convex/concave structures along the contour sé rules can be introduced from some mathematical
changed by noise and local deformations, and also depe

on scales of observations. For instance, two parts Br];ope_mes mentlon_ed in Nishida [11, 12]. In the structural
indexing and voting processes, for an integét

contours shown in Fig. 3a are similar to one another in~ " .
g ecifying the maximum number of segments to be merged,

terms of global scales, but their structural features a?% teristi b ted b ViocE RL
different. When N =4, the curve shown on left is characteristic numbers are generated by applylag=
to consecutiven segmentsif=13...,M).

composed of three segments connectedSgs S, & §

with characteristic number%@’ <_2'6>’ and (32), 3.2 Transformations of characteristic numbers
whereas the one shown on right is composed of five by small rotations

segments connected asS;t gt gt §0 S with
characteristic numberd6,6), (2,6), (2.2), (2,6), and The characteristic number(r,d) (r=2) can be

(32) . To cope with such deformations, structural featurdg@nsformed by rotating the shape. Rules can be introduced

, , for generating characteristic numbers by rotating the shape
on the two contours are edited so that their features cg

become similar to one another. For instance, the structura
features illustrated in Fig. 3a can be edited by merging t
two segment blocks  {S;, S, $} and

htly (see Fig. 3c).
RULE 2: By applying a small rotation to the segment,
rt]‘?e characteristic numbe(rr,d) can be transformed into
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one of the following: (1)(r,d), (2) (r+1d -1, 3) 4 Shape retrieval system

r+1d),(4) (r-1d) (r=3),(5) (r-1d+1) (r=3). _ )

< > _( ) < > ( )_( ) < L D_( ) A system for shape retrieval from image databases was
For instance, when N=4 and M =3, SiX geyeloped based on the proposed method for structural

characteristic numbers(2,7), (83, (103, (43, feature indexing with feature generation models. Some

(6,7), and (12,7) are generated fromURe 1 from the experimental trials were carried out to validate the

four segments illustrated in Fig. 1d with characteristigf]c(_:m\/eness of the proposed method for shape retrieval

numbers (2,7), (8,3, (4,3, and (6,7). Then, in total,
28 characteristic number¢2,7), (36), (37), (83,

(9.2, (93, (7.3, (74, (103, (112, (113, In the model database organization by the structural

<9 3> <9 4> <4 3> <52> <53> <33> <34> (6 7> indexing, a feature-model table as shown in Fig. 2 is
ChE A A AR A A A AT constructed by computing shape features in a coordinate

<776>’ <7’7>= (5,7>, <518>’ <1217>’ <136>’ <137>’ system specific to each model image. Features are

(117) , (1],8) are further generated by applyingiR 2 generated from each model pattern by Rules 1—3, and the
model identifier is appended to the list stored at the table

address corresponding to each generated feature.

In the retrieval by the voting process, from segment
3.3 Transformation of size and location features extracted from the query image, features are
parameters generated by Rules 1 and 2. Model identifier lists are

retrieved from the tables by using the addresses computed

The size and location parameters of a segment, nam#§m the generated features, and voting is carried out for

X - (x . (W, H), and (x are also each model on the lists. Since shape features computed by
( S’ys) ( E’yE) ( ) ( < yc) the proposed method depend on the orientation of images,

f:hanged by local dt_eformations and noise. In the structu%ltated images of the query image are considered for every
indexing and voting processes, each parameter B3> degree. Furthermore, mirror images are also

{XS’yS’XE' Ye Xo Yo W H' s quantized into L created for each rotated image. The 64 images obtained
intervals (L is a positive integer), and therefore, we neelom the query image in this way are treated independently
to take into consideration quantization errors of thesg the voting process by preparing 64 voting boxes per
parameters along with local shape deformations and noisgiodel. The parameters used in the shape feature

We introduce rules for generating quantized values @bmputation and the feature indexing are set as follows:

4.1 Outline of the system

to these generated ones.

the size and location parameters. N=8 (16 quantized directions), M =9, L=5,
RuLE 3: Let p be one of the parametersg=02.
{X81yS'XE’ Ve X Yo W, |-} for a segment, and be We now describe the computation of the similarity

between the query image and model images. Fori thie

a parameterO<a < 1.
P model, let ¢, be the number of features generated from

(1) If i<spL<i+a/2 (0<i<L),then integersi and _
. . segment features by Rules 1 and 2. For instagres 28

i —1 are generated as quantized valuegof o
) ) . for the contour shown in Fig. 1a wheN =4 and M =3.
(2) If i+l-a/2<pL<i+l (0<i<L-1), then p describing similarity between the model imalyeand
integers i and i+1 are generated as quantizedhe rotated/mirrored query imag¢ (j=0,,...,63), the

values of p. voting score is defined as; =y, /¢ , where v; is the

(3) Otherwise, an integer is generated as a quar't'mdnumber of votes for the voting bok, j ). In order to take
value of p
F h &8 ; into account the complexity and global properties of
rom each segment, at mo [M/ 2] features images, we also consider the following quantities:

(tuples of 10 integers) can be generated byeR, 2, and e  Similarity of complexity: min(c; /¢, G/ ), where

3. Furthermore, if we assume that value of paramgtds .
Cp, is the number of generated features from the

query image computed in the same wayas

O((1+ a)® DMm) features, on average, are generated from  Similarity of area: min(A /Ay, Ay/ A), where A,

the contour composed offn segments. A, are areas of the model imageand the query

distributed ~ uniformly  over the interval [0],
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Figure 4. Examples of shape retrieval from the shape database of marine creature images. The query shape is shown «
the top, and retrieved shapes are arranged in the descending order of the scores from the top-left.

image, respectively. 10]. The data set is composed of 1100 boundary contours
® Similarity of length: min(Li/Lo,Lo/l_i), where L;, of marine creature images, originally scanned from some
L, are lengths of boundary contours for the modeﬂrimed boqks._Some example_;s of shape retr?eval are
. , . i presented in Fig. 4. In each figure, the query image is
image i and the query image, respectively. shown at the top, with model images arranged from top-
® Similarity of thinness ratio: min(T, /Ty, To/T). Ieft in the descending order of assigned scores. One query
where T :47TA/ er . T, =41 Ao/ L2 . for shapg retrieval from the database composedlof 1100
model images takes about 1 second with an
implementation with C programming language (without
rotated/mirrored query imagq is defined as the product optimization) on Sun Sparc Ultra 2. Furthermore, the
of these four quantities ane; . Furthermore, the score Model construction process, which is fully automated,
) ) o takes only a few minutes for the image data set composed
Z; for ranking the model image with respect to the 4 1100 boundary contours. The size of the feature-model
query image is defined a&; = maxS; . table is 6.7Mbytes.
: The system was also tested with the shape database

The similarity §; between the model image and the

composed of 400 boundary contours of plant leaves [7].

4.2 Examples Some examples of shape retrieval are presented in Fig. 5.
The shape feature database was constructed for the image o )
data set publicly available through the www site 4.3 Quantitative evaluation
http://www.ee.surrey.ac.uk/Research/
VSSP/imagedb/demo.html In this section, the proposed algorithm described in

from the VSSP Center of the University of Surrey, UK [95ection 3 is evaluated statistically in terms of the
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Figure 5. Examples of shape retrieval from the shape database of plant leaf images.

robustness against noise and shape deformations, basetopn4%choices, and top 10% choices, in Table 1. For
the systematically designed, controlled experiments withiastance, for 1000 models, correct models are included in
large number of synthetic data. The experimental designtap 40 choices with probability 98.3% for proposed
composed of the generation of model patterns and thaigorithm, when ,BD[lS,Z.q. Clearly, significant

dfe{ﬁrma't:jons' tf dpe lljsed as iesltlng.tiamg les. dA m?d|f|tgat| provements can be observed for the proposed method in
ot the midpoint displacement algorithm based on Wactlongs, ,,s - of  cjassification accuracy and processing time.

Brownian motion is employed together with afﬁn:%herefore, the effectiveness has been verified through the

transformations for the model pattern generation [13 xperiments for the shape feature generation models along
From each model pattern expressed as a polygon, a nu {#n the shape representation

of testing samples are generated by applying sma

rotations and random perturbations along the contours. The

deformation process for a model pattern is composed of tge

following two steps:

(1) For a vertexP of the polygon, lefA andB be its two
adjacent vertices, antM be the midpoint of line
segmeniAB. For a given parametef3, move point?

Conclusion

We have presented an efficient, robust method for
shape retrieval from image databases based on an indexing
e technigue for structural features in terms of
by r(— B,ﬁ)EPM along the line passing throudgh convex/concave parts and quantized directional features
andM. This operation is applied to all vertices on th&l0ng contours. In particular, to improve the accuracy and
polygon. (The function r(— [3,/3) returns a real, robustness .of shape retrieval against noise and Ipcal shape

transformations, shape feature generation techniques have

random number betweer/3 and f3.) been incorporated into structural indexing. The feature
(2) After the operation (1), the polygon is rotated byransformation rules obtained by an analysis of some
angle transformedd (—n/(2N)sG<n/(2N)). particular types of shape deformations are exploited to

. o . . . enerate features that can be extracted from deformed
The main contribution of this work is to incorporate th .
S . . atterns. The generated features are used in model database
shape feature generation into the structural indexing for =~ . . . . . . )
: . . organization with feature indexing and retrieval with a
coping with shape deformations and feature *. : . . . :
: . voting technique. Experimental trials with large image
transformations. Therefore, for comparison, we adapte
atabases of boundary contours have shown that the shape

Stein-Medioni method [19] to the model databas : o :
o e : eature generation significantly improves the robustness
organization and classification, extracting segment features L .
: 9 and efficiency of shape retrieval.
from several versions of polygonal approximations of thé
shape contour with a variety of error tolerances for
approximations. By changing the error tolerance fola f
polygonal approximation of contours with Rarsenethod elerences

[16] from 1% to 10%, with a step of 1%, of the widest side

of the bounding box of the contour, ten versions . _ )
g recognizing visual shapeslEEE Trans. Pattern Analysis

polygonal approxma_tlons were created for each model and Machine Intelligencevol. 16, no. 6, pp. 373—392,
image and the query image. 1994.

Classification rates are presented for top 1% choicqgl

A. Califano and R. Mohan, “Multidimensional indexing for

A. Del Bimbo and P. Pala, “Image indexing using shape-
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