
Shape Retrieval from Image Databases through
Structural Feature Indexing

Hirobumi Nishida
Software Research Center, Ricoh Co., Ltd.

1-1-17 Koishikawa, Bunkyo-ku, Tokyo 112-0002, Japan
hn@src.ricoh.co.jp

Abstract

Efficient and robust information retrieval from large image
databases is an essential functionality for the reuse,
manipulation, and editing of multimedia documents.
Structural feature indexing is a potential approach to
efficient shape retrieval from large databases, but it is
sensitive to noise, scales of observation, and local shape
deformations. To improve the robustness, shape feature
generation techniques are incorporated into structural
feature indexing. The feature transformation rules
obtained by an analysis of some particular types of shape
deformations are exploited to generate features that can be
extracted from deformed patterns. Experimental trials with
large image databases of boundary contours show that the
feature generation significantly improves robustness and
efficiency of shape retrieval.

1 Introduction

Efficient and robust information retrieval from large image
databases is an essential functionality for the reuse,
manipulation, and editing of multimedia documents [6, 15].
Images have several components in terms of information
representation, such as color, texture, and shape [3]. Color
and texture are mathematically and physically tractable,
and their properties and variations can be represented in
well-structured forms by some statistical methods [17]. On
the other hand, shape is another essential component, but
shape analysis and representation are still difficult research
subjects in spite of intensive research carried out for
decades. Feature indexing techniques [1, 5] are potential
approaches to improving efficiency in shape classification
and retrieval. However, they are known to be sensitive to
noise and shape deformations, and their performance in
terms of classification accuracy is degraded drastically
even due to small changes of shapes [4].

Efficient and robust retrieval from large image
databases by shape [8] is a challenging problem, and shape

retrieval has been studied recently for improving efficiency
and robustness. For structural organization of large image
databases composed of boundary contours of objects, Del
Bimbo [2] and Mokhtarian et al. [9, 10] apply the
curvature scale-space approach to feature indexing, and
Sclaroff [18] proposes a method for image indexing with
the modal matching [20]. Furthermore, the structural
indexing by Stein and Medioni [19] copes with noise and
local shape deformations by extracting shape features from
several versions of polygonal approximations of boundary
contours. However, there are some technical questions
against these approaches. The curvature scale-space
method requires a large amount of computations for
smoothing boundary contours with a number of different
support sizes. Sclaroff’s method requires the user to
specify prototype shape sets spanning the shape space
adequately, but this operation is obviously difficult for
end-users. Stein-Medioni's method degrades the efficiency
by generating a number of polygonal approximation from
the boundary contours.

Efficiency and robustness are important, but sometimes
incompatible criteria for performance evaluation. The
improvement of robustness implies that the retrieval should
tolerate certain types of variations and deformations for
images. Obviously, it may lead to inefficiency if some
brute-force methods are employed such as generating
various images with a number of different parameters. A
key to achieving both efficiency and robustness is through
a compact and well-structured representation of images
that tolerate variations and deformations.

In this paper, an efficient, robust method is presented
for shape retrieval from image databases composed of
boundary contours of objects. The method is mainly based
on an indexing technique for structural features, along with
a voting technique for ranking model images in terms of
extracted features from the query image. In particular,
shape feature generation techniques are incorporated into
structural indexing to improve the accuracy and robustness
of shape classification against noise and local shape
transformations [14].



The design of algorithms and data structures proceeds
in the following steps:
(1) Representation: Based on convex/concave structures

incorporating quantized-directional features along
boundary contours, a compact shape representation
with simple, efficient computation is explored so that
the contours can be described by a few components
with rich features.

(2) Feature transformations: Features based on
convex/concave structures are transformed by noise,
scales of observations, and local shape deformations.
Therefore, to cope with such deformations, an
analysis of feature transformations is carried out with
respect to some particular types of shape
deformations, leading to transformation rules of
structural features composed of a small number of
distinct cases. Features that can be extracted from
deformed patterns caused by noise and local shape
deformations are generated by applying the
transformation rules to the features extracted from the
image patterns.

(3) Model database organization by structural indexing:
For efficient manipulation of a large number of
models, a large table is constructed for a model set by
assigning a table address to a feature and storing there
a list of the model identifiers with the corresponding
feature. The generated features by the transformation
rules are also used to cope with feature
transformations due to noise, scales of observation,
and local shape deformations.

(4) Retrieval by voting for models: In the retrieval, from
the features extracted from the query image, features
are also generated by the transformation rules. Model
identifier lists are retrieved from the table addresses
corresponding to the generated features, and voting is
carried out for each model on the lists. The query
image is classified efficiently by selecting out some
models according to scores based on the number of
votes.

This paper is organized as follows: In Section 2, a

structural representation of curves by quasi-
convex/concave features along with quantized-directional
features [11, 12] is outlined. In Section 3, we describe the
transformation rules of structural features to generate
features that can be extracted from deformed patterns
caused by noise and local shape deformations. In Section 4,
we describe a shape retrieval system based on the proposed
method for structural indexing with feature generation
models. Furthermore, the system is demonstrated with
large image databases, and the proposed method is
validated by systematically designed experiments with a
large number of synthetic data. Section 5 is the conclusion.

2 Structural representation of closed
contours

The structural representation of closed contours [11, 12] is
outlined in this section, based on quasi-convex/concave
structures along contours incorporating 2N quantized-
directional features (N  is a natural number). As shown in
Fig. 1a, the closed contour is first approximated by a
polygon. On a 2-D plane, we introduce N -axes together
with 2N  quantized-direction codes. For instance, when
N = 4 , eight quantized-directions are defined along with
the four axes as shown in Fig. 1b. Based on these N -axes
together with 2N  quantized-direction codes, the analysis
is carried out hierarchically.

A curve is decomposed into sub-segments at extremal
points along each of the N -axes. Fig. 1c illustrates the
decomposition of a contour shown in Fig. 1a into sub-
segments when N = 4 . For adjacent sub-segments a and b,
suppose that we turn counterclockwise when traversing
them from a to b, and the joint of a and b is an extremal
point along the axes toward the directions

( )( )j j N k, mod , ,+ 1 2 � . Then, we write the

concatenation of these two sub-segments as a bj k, → .
For instance, the joint of sub-segments H and G in Fig. 1c
is an extremal point along the three axes toward the
directions 3, 4, and 5. Therefore, the concatenation of H

and G is written as H G3 5, → . In this way, we obtain
the following concatenations for the sub-segments
illustrated in Fig 1c.
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By linking local features around joints of adjacent sub-
segments, some sequences of the following form can be
constructed:
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Figure 1.  (a) a closed contour with a polygonal
approximation, (b) quantized-directional codes when
N = 4 , (c) sub-segments when N = 4 , (d) segments
when N = 4 .
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A part of the contour corresponding to a sequence of this
form is called a segment. Furthermore, the starting point of
the segment is defined as the end point of a0 , and the

ending point is as the end point of an . When a segment is

traversed from its starting point to its ending point, one
turns counterclockwise around any joints of sub-segments.
The following segments, as shown in Fig. 1d, are
generated from the 13 sub-segments shown in Fig. 1c:
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A segment is characterized by a pair of integers r d, ,

characteristic numbers, representing the angular span of
the segment and the direction of the first sub-segment:
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The characteristic numbers are given by 2 7, , 8 3, ,

4 3, , and 6 7, , respectively, for the four segments

shown in Fig. 1d.
Based on the coordinate system defined by the

bounding box of the contour (the upright rectangle just
enclosing the shape) such that its center is located at
( )05 05. , .  and the length of its longer side is 1, each

segment is associated with eight parameters describing its

size and position: location of its starting point ( )x yS S, ,

location of its ending point ( )x yE E, , location of the

center ( )x yC C,  and size ( )W H,  of its bounding box.

Furthermore, in the structural indexing and voting
processes, these eight parameters are quantized into L
intervals, treated as integers 0 through L − 1 . Therefore,
features of a segment are described by ten integers:

       
       

( , , , , , ,

, , , )

r d L x L y L x L y

L x L y L W L H

S S E E

C C

⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅
. (3)

Adjacent segments are connected by sharing the first
sub-segments or last ones of the corresponding sequences.
These two types of connection are denoted by S Th  and

S Tt , respectively, for two adjacent segments S and T.

For instance, connections are denoted by
S S S S Sh t h t

1 2 3 4 1 for the four segments shown in Fig.

1d.
In the sequel, we assume that segments are indexed

sequentially so that the interior of the image pattern or
object lies on the left side.

3 Structural indexing with feature
generation models

Features of each segment extracted from the contour curve
are described by 10 integers. A large table, as illustrated in
Fig. 2, is constructed for a model set by assigning a table
address to a feature and storing there a list of the model
identifiers with the corresponding feature. Furthermore,
classification of the query image is carried out by voting
for each model on the lists stored at the table address
corresponding to each segment feature.

However, the features are sensitive to noise and local
shape deformations, and therefore, the correct model does
not necessarily receive many votes as expected for the
ideal case. Furthermore, when only one sample pattern is
available for each class, statistical learning techniques from
training data cannot be employed for obtaining a priori
knowledge and feature distributions of deformed patterns.
To cope with these problems, we analyze the feature
transformations caused by some particular types of shape
deformations, constructing feature transformation rules.
Based on the rules, we generate segment features that can
be extracted from deformed patterns caused by noise and
local shape deformations. In both processes of model
database organization and retrieval, the generated features
by the transformation rules are used for structural indexing
and voting, as well as the features actually extracted from
contours.

The following three types of feature transformations
are considered in this work:
(1) Change of convex/concave structures caused by

Feature Model Identifier List
... ...

(3, 4, 2, 3, 1, 3, 2, 1, 1, 1) 3, 78, 346, 897
(3, 4, 2, 3, 1, 3, 2, 1, 1, 2) 89, 298, 485, 837, 917

... ...
(5, 6, 2, 3, 1, 3, 2, 1, 1, 1) 19, 289, 283, 584, 739, 937, 997

... ...
Figure 2.  Model database organization by structural
indexing. Each table item stores a model identifier list
with the segment feature corresponding to the table
index.



perturbations along normal directions on the contour
and scales of observation, along with transformations
of characteristic numbers (the angular span of the
segment and the direction of the first sub-segment).

(2) Transformations of characteristic numbers caused by
small rotations.

(3) Transformations of size and location parameters due
to noise and local deformations.

We describe these three types of transformation in the rest
of this section.

3.1 Transformations of convex/concave
structures

The convex/concave structures along the contour are
changed by noise and local deformations, and also depend
on scales of observations. For instance, two parts of
contours shown in Fig. 3a are similar to one another in
terms of global scales, but their structural features are
different. When N = 4 , the curve shown on left is
composed of three segments connected as S S St h

1 2 3

with characteristic numbers 6 6, , 2 6, , and 3 2, ,

whereas the one shown on right is composed of five
segments connected as ′ ′ ′ ′ ′S S S S St h t h

1 2 3 4 5 with

characteristic numbers 6 6, , 2 6, , 2 2, , 2 6, , and

3 2, . To cope with such deformations, structural features

on the two contours are edited so that their features can
become similar to one another. For instance, the structural
features illustrated in Fig. 3a can be edited by merging the
two segment blocks { }S S S1 2 3, ,  and

{ }′ ′ ′ ′ ′S S S S S1 2 3 4 5, , , ,  to segments S and S’

with the characteristic number 7,6  as

shown Fig. 3b.
In general, rules can be introduced for

generating characteristic numbers from a
segment block (a set of consecutive
segments).

RULE 1: From a segment block, a
characteristic number is generated
according to the following rules:
(1) From a segment block

{ }S i n S S Si
h t t

n= 1 2 1 2, , , ;� � ,

where n is odd, with characteristic
numbers r di i, , a characteristic

number ( )− +
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∑ 1
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i
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n
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1
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i

n
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(2) From a segment block

{ }S i n S S Si
t h h

n= 1 2 1 2, , , ;� � , where n is odd,

with characteristic numbers r di i, , a characteristic

number ( )− +

=
∑ 1

1

1
1

i
i

i

n

r d,  is generated if

r r ri i i2 1 2 2 1 2− +− + ≥  for  i n= 1 2 2, , , /�  and
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=
∑ 1 2

1

1

i
i

i

n
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These rules can be introduced from some mathematical
properties mentioned in Nishida [11, 12]. In the structural
indexing and voting processes, for an integer M
specifying the maximum number of segments to be merged,
characteristic numbers are generated by applying RULE 1
to consecutive n  segments (n M= 1 3, , ,� ).

3.2 Transformations of characteristic numbers
by small rotations

The characteristic number r d,  ( r ≥ 2 ) can be

transformed by rotating the shape. Rules can be introduced
for generating characteristic numbers by rotating the shape
slightly (see Fig. 3c).

RULE 2: By applying a small rotation to the segment,
the characteristic number r d,  can be transformed into

S1
S3

S2

S’1

S’2

S’3

S’4

S’5

(a)

(b)

S S’

(c)

2

1

0 0

1

2

2

1

0 0

1

2

1

0

0
1

2

7

Figure 3.  (a) Part of contours similar to one another in terms of global
scales, (b) editing structural features by merging segment blocks, (c)
transformations of characteristic numbers of segments by small rotations.



one of the following: (1) r d, , (2) r d+ −1 1, , (3)

r d+ 1, , (4) r d− 1,  (r ≥ 3 ), (5) r d− +1 1,  ( r ≥ 3 ).

For instance, when N = 4  and M = 3 , six
characteristic numbers 2 7, , 8 3, , 10 3, , 4 3, ,

6 7, , and 12 7,  are generated from RULE 1 from the

four segments illustrated in Fig. 1d with characteristic
numbers 2 7, , 8 3, , 4 3, , and 6 7, . Then, in total,

28 characteristic numbers 2 7, , 3 6, , 3 7, , 8 3, ,

9 2, , 9 3, , 7 3, , 7 4, , 10 3, , 11 2, , 11 3, ,

9 3, , 9 4, , 4 3, , 5 2, , 5 3, , 3 3, , 3 4, , 6 7, ,

7 6, , 7 7, , 5 7, , 5 8, , 12 7, , 13 6, , 13 7, ,

11 7, , 118,  are further generated by applying RULE 2

to these generated ones.

3.3 Transformation of size and location
parameters

The size and location parameters of a segment, namely

( )x yS S, , ( )x yE E, , ( )W H, , and ( )x yC C, , are also

changed by local deformations and noise. In the structural
indexing and voting processes, each parameter in

{ }x y x y x y W HS S E E C C, , , , , , ,  is quantized into L

intervals (L  is a positive integer), and therefore, we need
to take into consideration quantization errors of these
parameters along with local shape deformations and noise.

We introduce rules for generating quantized values of
the size and location parameters.

RULE 3: Let p  be one of the parameters

{ }x y x y x y W HS S E E C C, , , , , , ,  for a segment, and α  be

a parameter 0 1≤ ≤α .

(1) If i pL i≤ ≤ + α 2  ( 0< <i L ), then integers i  and

i − 1  are generated as quantized values of p .

(2) If i pL i+ − ≤ < +1 2 1α  ( 0 1≤ < −i L ), then

integers i  and i + 1  are generated as quantized
values of p .

(3) Otherwise, an integer i  is generated as a quantized
value of p .

From each segment, at most  5 2 28⋅ ⋅ M  features

(tuples of 10 integers) can be generated by RULE 1, 2, and
3. Furthermore, if we assume that value of parameter p  is

distributed uniformly over the interval [ ]0 1, ,

( )( )O Mm1
8+ ⋅α  features, on average, are generated from

the contour composed of m segments.

4 Shape retrieval system

A system for shape retrieval from image databases was
developed based on the proposed method for structural
feature indexing with feature generation models. Some
experimental trials were carried out to validate the
effectiveness of the proposed method for shape retrieval.

4.1 Outline of the system

In the model database organization by the structural
indexing, a feature-model table as shown in Fig. 2 is
constructed by computing shape features in a coordinate
system specific to each model image. Features are
generated from each model pattern by Rules 1—3, and the
model identifier is appended to the list stored at the table
address corresponding to each generated feature.

In the retrieval by the voting process, from segment
features extracted from the query image, features are
generated by Rules 1 and 2. Model identifier lists are
retrieved from the tables by using the addresses computed
from the generated features, and voting is carried out for
each model on the lists. Since shape features computed by
the proposed method depend on the orientation of images,
rotated images of the query image are considered for every
2 32π  degree. Furthermore, mirror images are also

created for each rotated image. The 64 images obtained
from the query image in this way are treated independently
in the voting process by preparing 64 voting boxes per
model. The parameters used in the shape feature
computation and the feature indexing are set as follows:
N = 8  (16 quantized directions), M = 9 , L = 5 ,
α = 0 2. .

We now describe the computation of the similarity
between the query image and model images. For the i -th
model, let ci  be the number of features generated from

segment features by Rules 1 and 2. For instance, ci = 28
for the contour shown in Fig. 1a when N = 4  and M = 3 .
For describing similarity between the model image i  and
the rotated/mirrored query image j  ( j = 0 1 63, , ,� ), the

voting score is defined as s v cij ij i= , where vij  is the

number of votes for the voting box ( )i j, . In order to take

into account the complexity and global properties of
images, we also consider the following quantities:
z Similarity of complexity: ( )min ,c c c ci i0 0 , where

c0  is the number of generated features from the

query image computed in the same way as ci .

z Similarity of area: ( )min ,A A A Ai i0 0 , where Ai ,

A0  are areas of the model image i  and the query



image, respectively.
z Similarity of length: ( )min ,L L L Li i0 0 , where Li ,

L0  are lengths of boundary contours for the model

image i  and the query image, respectively.
z Similarity of thinness ratio: ( )min ,T T T Ti i0 0 ,

where T A Li i i= 4 2π , T A L0 0 0
24= π .

The similarity Sij  between the model image i  and the

rotated/mirrored query image j  is defined as the product

of these four quantities and sij . Furthermore, the score

Σ i  for ranking the model image i  with respect to the

query image is defined as Σ i
j

ijS= max .

4.2 Examples

The shape feature database was constructed for the image
data set publicly available through the www site

http://www.ee.surrey.ac.uk/Research/
VSSP/imagedb/demo.html

from the VSSP Center of the University of Surrey, UK [9,

10]. The data set is composed of 1100 boundary contours
of marine creature images, originally scanned from some
printed books. Some examples of shape retrieval are
presented in Fig. 4. In each figure, the query image is
shown at the top, with model images arranged from top-
left in the descending order of assigned scores. One query
for shape retrieval from the database composed of 1100
model images takes about 1 second with an
implementation with C programming language (without
optimization) on Sun Sparc Ultra 2. Furthermore, the
model construction process, which is fully automated,
takes only a few minutes for the image data set composed
of 1100 boundary contours. The size of the feature-model
table is 6.7Mbytes.

The system was also tested with the shape database
composed of 400 boundary contours of plant leaves [7].
Some examples of shape retrieval are presented in Fig. 5.

4.3 Quantitative evaluation

In this section, the proposed algorithm described in
Section 3 is evaluated statistically in terms of the

� �

(a) (b)

� �

(c) (d)
Figure 4.  Examples of shape retrieval from the shape database of marine creature images. The query shape is shown at
the top, and retrieved shapes are arranged in the descending order of the scores from the top-left.



robustness against noise and shape deformations, based on
the systematically designed, controlled experiments with a
large number of synthetic data. The experimental design is
composed of the generation of model patterns and their
deformations to be used as testing samples. A modification
of the midpoint displacement algorithm based on fractional
Brownian motion is employed together with affine
transformations for the model pattern generation [13].
From each model pattern expressed as a polygon, a number
of testing samples are generated by applying small
rotations and random perturbations along the contours. The
deformation process for a model pattern is composed of the
following two steps:
(1) For a vertex P of the polygon, let A and B be its two

adjacent vertices, and M be the midpoint of line
segment AB. For a given parameter β , move point P

by ( )r PM− ⋅β β,  along the line passing through P

and M. This operation is applied to all vertices on the
polygon. (The function ( )r − β β,  returns a real,

random number between −β  and β .)

(2) After the operation (1), the polygon is rotated by
angle transformed θ  ( ( ) ( )− ≤ <π θ π2 2N N ).

The main contribution of this work is to incorporate the
shape feature generation into the structural indexing for
coping with shape deformations and feature
transformations. Therefore, for comparison, we adapted
Stein-Medioni method [19] to the model database
organization and classification, extracting segment features
from several versions of polygonal approximations of the
shape contour with a variety of error tolerances for
approximations. By changing the error tolerance for
polygonal approximation of contours with Ramer·s method
[16] from 1% to 10%, with a step of 1%, of the widest side
of the bounding box of the contour, ten versions of
polygonal approximations were created for each model
image and the query image.

Classification rates are presented for top 1% choices,

top 4%choices, and top 10% choices, in Table 1. For
instance, for 1000 models, correct models are included in
top 40 choices with probability 98.3% for proposed
algorithm, when [ ]β ∈ 15 2 0. , . . Clearly, significant

improvements can be observed for the proposed method in
terms of classification accuracy and processing time.
Therefore, the effectiveness has been verified through the
experiments for the shape feature generation models along
with the shape representation.

5 Conclusion

We have presented an efficient, robust method for
shape retrieval from image databases based on an indexing
technique for structural features in terms of
convex/concave parts and quantized directional features
along contours. In particular, to improve the accuracy and
robustness of shape retrieval against noise and local shape
transformations, shape feature generation techniques have
been incorporated into structural indexing. The feature
transformation rules obtained by an analysis of some
particular types of shape deformations are exploited to
generate features that can be extracted from deformed
patterns. The generated features are used in model database
organization with feature indexing and retrieval with a
voting technique. Experimental trials with large image
databases of boundary contours have shown that the shape
feature generation significantly improves the robustness
and efficiency of shape retrieval.
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Table 1.  Classification rates of deformed patterns by the proposed algorithm, with the level of noise and local shape
deformations described by β , in comparison with an adaptation of Stein-Medioni method.

Proposed Method Stein-Medioini#model
s

β
Top
1%

Top
4%

Top
10%

Time
(ms/sample)

Top
1%

Top
4%

Top
10%

Time
(ms/sample)

0.0—0.5 96.4 99.7  99.9 84.1 95.8 97.6
0.5—1.0 93.4 99.3  99.8 79.5 93.8 96.4
1.0—1.5 84.1 98.1  99.5 69.8 88.7 92.9

100

1.5—2.0 77.3 96.7  98.9

8.6

61.3 84.0 90.0

30.9

0.0—0.5 98.8 99.9 100.0 90.2 95.6 97.5
0.5—1.0 97.7 99.7 100.0 86.6 93.6 96.4
1.0—1.5 94.0 99.0  99.9 78.6 89.3 93.8

500

1.5—2.0 90.6 98.1  99.7

11.5

70.3 84.4 90.9

31.7

0.0—0.5 99.0 99.9 100.0 90.9 95.8 97.6
0.5—1.0 98.0 99.7 100.0 87.4 93.9 96.6
1.0—1.5 94.7 99.1  99.9 79.6 89.7 94.0

1000

1.5—2.0 91.5 98.3  99.7

17.2

71.5 84.9 91.1

36.0
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