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Abstract

An algorithm for determination of the number of modes in a
gray-level image histogram is presented in this paper. The
hypothesis is that the image histogram’s pdf is approached
by a mixture of Gaussians. Then, the algorithm tries to
estimate the number of components in the mixture, which
is an important parameter when using the maximum likeli-
hood technique to estimate the remaining of parameters of
the mixture. The algorithm is divided into two parts. First,
initial clustering using the k-means algorithm is performed.
This allows to estimate the centers of each cluster. Second,
a novel algorithm, denoted “Elimination of False Clusters”
(EFC) based on the Gaussian characteristics tries to sup-
press clusters which have no corresponding modes in the
histogram. The algorithm has been validated on both artifi-
cial and real histograms.

1 Introduction

Estimation of a histogram’s probability density function
(pdf) is one of the fundamental operations involved in im-
age processing. It is also a difficult operation. A histogram
is usually composed of several modes, each of which corre-
sponds to a class of objects. This type of histogram is called
“multi-modal”. Often, segmenting an image means separat-
ing the modes in the histogram. One of the major difficulties
in estimating a histogram’spdf is that there may be several
overlapping modes in the histogram (see figure 1). The ex-
istence of such overlapping modes makes it impossible to
use popular parametric forms ofpdf to estimate each mode
in an isolation. When the histogram is “uni-modal”e.g., it
contains one mode, it can theoretically be approached by
a Gaussian distribution [1]. When the histogram is multi-
modal, complex models ofpdf estimation should be used.
The Mixture model is the most appropriate model.

Mixture models, particularly Gaussian mixture models,
have recently attracted wide attention in the neural network

community. The major interest of the Gaussian mixture is
its capacity to produce a quick and useful approximation to a
multi-modal histogram. The appeal of Gaussian distribution
in the mixture is attributable to a large extent to the applica-
bility of the EM (Expectation Maximization) algorithm [2]
which maximize a likelihood function. However, the use of
the EM algorithm requires that the number of components in
the mixture (the number of modes in the histogram) is avail-
able. Moreover, in order to avoid local minima, accurate
values of the parameters must be available before running
the EM algorithm.

Determination of the number of components in the mix-
ture can be treated as model selection problem using cross
validation techniques [3] and Bayesian methods [4]. More-
over, Zhang [5] considered the problem as cluster validation
problem and developed a formal way to estimate the number
of components using the AIC criterion [6]. The main argu-
ment against these algorithms is their computational com-
plexity. In this paper we are interested in direct methods
based on “processed data knowledge” (histograms). One
such method seeks to estimate the number of components
in a mixture by using the number of inflection points in the
histogram [7] [8]. Estimation using such an approach, how-
ever, is subject to distortion due to noise in the histogram.
In this paper, we propose a new algorithm based on a direct
approach (processed data knowledge).

Our algorithm is composed of two steps. First, the algo-
rithm pre-processes input data using the k-means algorithm.
The k-means algorithm performs an unsupervised learning
in order to find centers of clusters which reflect the distribu-
tion of the data points. Our contribution is the determination
of an appropriate number of initial clusters in the k-means
algorithm so that all the modes can be accurately located for
a large class of histograms. Then, in the second step, we
propose the Elimination of False Clusters (EFC) procedure
which is based on the Gaussian characteristics, for eliminat-
ing false clusters. The two steps result in accurate initializa-
tion of the parameters in the mixture, which helps keep the
EM algorithm to result in a more accurate final estimation



of the parameters.
The rest of this paper is organized as follows. Section 2

is devoted to brief overview of our algorithm and solutions
to the determination of the number of initial clusters and the
EFC procedure. The EM algorithm for histogram’spdfesti-
mation is presented in section 3. Experimental results of our
algorithm applied to both artificial and real histograms as
well as evaluation of our algorithm are presented in Section
4. Finally, conclusion is given in section 5.

2 An overview of the algorithm

2.1 Basic hypothesis of the algorithm

A gray-level image histogram can be represented by a func-
tion h(x), x 2 Gm of the gray-level frequencies of the im-
age, whereGm = f0; 1; :::; N � 1g corresponds to the gray
levels of the image. There exists a normalized representa-
tion of h(x), denoted byhz(x) so thathz(x) =

h(x)P
N�1

i=0
h(i)

(x 2 Gm). Since
PN�1

i=0 hz(i) = 1 andhz(x) � 0, hz(x)
can be approached by apdfdenoted byp(x).

When a given image contains more than one ob-
ject/region, the histogram of the image may represent each
object/region by a mode (see figure 1).
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Figure 1: a) An artificial histogram generated from a mix-
ture of three Gaussians. b) & b’) An optical image and its
histogram. c) & c’) A typical radar image and its histogram

Our hypothesis is that each mode corresponds to a Gaus-
sian distribution, which is acceptable in a large number of
practical applications. Such a histogram can be approached
by a mixture model so that:

p(x=�) =

MX

j=1

PjGj(x=�j) (1)

with the restrictionsPj � 0 and
PM

j=1 Pj = 1 (j =
1; :::;M ). Pj are the mixing parameters.� denotes the vec-
tor of parameters�j and�j the parameter of thejth distri-
bution. Gj is thejth distribution of the mixture given by:

G(x) = 1p
2��2

e
�(x��)2

2�2

We used the notationp(x=�) to emphasize the dependence
of p(x ) on�.

2.2 Bloc diagram of the algorithm

Figure 2 shows a block diagram of the algorithm composed
of two major steps. In the first step, initial estimation of the
mixture parameters is done using the k-means algorithm.
In order to approximate each mode by at least one Gaus-
sian, the k-means algorithm is applied with a numberK of
clusters greater than the numberM of modes in the image
histogram. The next step mainly concerns the EFC pro-
cedure for suppressing false clusters that may result from
the k-means algorithm. Basically, it takes advantage of the
Gaussianpdf function. Before proceeding the elimination,
a smoothing operation is performed on the histogram us-
ing a PNN (Probabilistic Neural Network or equivalently
Parzen Window) [9]. While this operation is not essential
in all cases, it greatly increases the robustness of our model
against noise (especially when applied to radar images).
Finding the optimal smoothing parameter for the PNN is an-
other interesting question that we have studied [10] and will
be presented in a further paper.
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Figure 2: A block diagram of the proposed algorithm

2.3 The number of clusters in k-means algo-
rithm

To initialize an appropriate number of clusters in the k-
means algorithm, we have designed an experimental pro-
cedure as follows. First, for each of the possible number of



modesM = 1; :::; 5, we randomly generate a set of 10000
artificial histograms containingM modes. The aim of this
experiment is to find, for all the histograms with a given
number of modes, the average value of the initial number
of clusters,K, for which the clustering algorithm finds the
true center of each mode. For this purpose, we propose an
error function to measure the quality of the set of clusters
computed by k-means algorithm. This is an average of the
distances between each of the true centers�j , (j = 1;M )
(which are known in this experiment) and the nearest center
y(�j) computed by the k-means algorithm:

err =
1

M

MX

j=1

k�j � y(�j)k (2)
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Figure 3: Average errorE(err), an indicator of the perfor-
mance of the k-means algorithm, as a function ofM andK.
E(err) is calculated over 10000 histograms.

Figure 3 shows a very interesting relationship between
the number of clusters,K, the number of modes,M , and
the precision of approximation . From the statistical point
of view, the k-means algorithm accurately finds all the true
centers ifk is chosen at leastM + 4. This itself is an im-
portant result concerning the k-means algorithm. We further
note that the choicesM+2 orM+3 are also good candidate
for K. Consequently, when applied to real images, it is not
necessary to impose a very strict condition on the accuracy
of the estimation ofM .

2.4 EFC procedure

The k-means algorithm was applied with an initial number
of clusters greater than the number of modes, there are false
clusters that must be eliminated. In general, EFC procedures
can be performed using regulation-based methods. In this
paper, we develop an EFC procedure which is based on the
symmetry property of the Gaussian. Indeed, a cluster is true
if its center separates a mode, on a certain interval, into two
equal parts.

The EFC procedure proposed here depends on two pa-
rameters,� and 
. � is related to the relative level of

the histogram at which the symmetry is measured. It
specifies the percentage of the histogram heighth(yj) for
any cluster centeryj . In practice,� can be as large as
0:975 and as small as0:5. The parameter� is closely re-
lated to “a concept of limit” introduced in [8] where� =
minx2fyj ;yj+1;:::;yj+1gP (x=�)

h[y] ; 0 � � < 1.
The parameter
 is used as a threshold on the acceptable

deviation between the true center and the closest center of
the cluster computed by the k-means algorithm. If the de-
viation, theoretically written ask�j � yjk is grater than
,
thenyj is rejected. In real applications,�j are unknown.
Thanks to the fact that a true center divides a mode into two
symmetric parts, an equivalent test can be performed with-
out knowing the position of the true center. If horizontal
line is plotted at the level�h(yj), it is sufficient to measure
the absolute value of the difference between the horizontal
distance from the point(yj ; �h(yj)) to the first intersection
point with the histogram at left (denoted bypleft), and the
distance from the point(yj ; �h(yj)) to the first intersection
point with the histogram at right (denoted bypright).

Now, we want to know the reasonable values for
. To
answer this question, we have designed an experiment using
the same set of data used in the figure 3. The goal is to mea-
sure the deviation between the true center and the closest
center found by the k-means algorithm, for each combina-
tion of M andK. to do this, we have adopted atolerant
(rather than aconservative) approach. To be more precise,
we measure the maximum deviation. The result of this ap-
proach is the largest possible value for
. Table 1 illustrates
the results obtained for each combination ofK andM .

M /K 1 2 3 4 5 6 7 8 9
1 8 12 8 7 6 - - - -
2 - 20 11 9 8 7 - - -
3 - - 16 11 9 8 7 - -
4 - - - 13 10 9 8 7 -
5 - - - - 11 9 8 7 6

Table 1: Values of
 in relation withM andK

Table 1 is useful for assigning values to
. Note that
since the number of modesM is unknown, one can take
the maximum value of
 corresponding to the number of
clusters used. The EFC procedure is given as follow :

� Choose a clusteryj to test.

� Find the two distancesdleft and dright on the line
� = �h(yj) from (yj ; �h(yj) to the nearest intersec-
tion points on both sides, i.e.(yj � dleft; �h(yj) and
(yj + dright; �h(yj).

� if kdleft � drightk > 
, eliminate the cluster.



2.5 Evaluation of the algorithm

This evaluation aims to determine the capability of our
model to find the exact number of modes in the histogram.
This is different of that in figure 3. Indeed, figure 3 deals
only with the quality of the centers estimated by the k-means
algorithm in relation with the number of initial clusters. This
evaluation, however, uses the same data from that in section
2.3., namely a set of 10000 random histograms. For each
histogram, we apply the algorithm with an initial number of
clusters greater than the number of modes.
The results are presented in tables 2 and 3 for a number of
combinations ofM andK. Table 2 shows the percentage of
cases in which the exact number of modes is found. Table
3 shows the percentage of cases in which the difference be-
tween the exact number of modes and the detected number
of modes, plus or minus one mode.

M /K 1 2 3 4 5 6 7 8 9
1 - 100 91.3 54.7 45.2 - - - -
2 - - 49.9 55.2 57.1 46 - - -
3 - - - 42.7 46.9 51.6 39.6 - -
4 - - - - 26.7 31.6 43.5 40.5 -
5 - - - - - 21.4 29.3 32.4 19.5

Table 2: Percentage of cases in which our model finds the
exact number of modes in relation withM andK with � =
0:96

A number of remarks can be made regarding the two ta-
bles. First, it appears that the performance of our model
decreases with the number of modes. This is reasonable be-
cause when the number of modes increases, the chance of
having overlapping modes is higher. We believe the num-
ber of bins in the histogram (or equivalently the number of
gray-levels) affects the results because it influences the “sep-
arability” of the randomly generated modes. In all of our
experiments, the histogram has 256 bins.

Secondly, from table 2 , we can see thatM +3 is a good
choice forK, althoughM + 2 andM + 4 are not too bad.
This agrees fairly well with the results presented in section
2.3.

Thirdly, although the best performance on detection of
the exact number of modes forM = 2; 3; 4 is around50%,
it should be noted that when an error of one mode is allowed,
the percentage rises beyond80% for manyM=K combina-
tions. Moreover, we have noted that73% of cases of table 3
are those in which the algorithm detects an extra mode. Both
50% and80% results are encouraging if we consider the fact
that our approach is based on the k-means algorithm which
is not designed to automatically determines the number of
modes.

M /K 1 2 3 4 5 6 7 8 9
1 - 0 8.7 35.3 45.8 - - - -
2 - - 50.1 43.5 39.4 31.8 - - -
3 - - - 45.1 40.9 41.5 43.1 - -
4 - - - - 34.3 36.2 38 41.1 -
5 - - - - - 21.1 15.7 20.3 27.2

Table 3: Percentage of cases where our model finds the real
number of modes plus or minus one mode with� = 0:95.

3 Histogram’s pdf and the EM algo-
rithm

The algorithm described in the previous section is designed
to estimate the number of components in the mixture (the
number of modes in the histogram). The number of compo-
nents is not sufficient to represent the histogram’spdf. In-
deed, the mixture model requires the estimation of the pa-
rameters of each component [11]. Since by hypothesis we
deal with a mixture of Gaussians, the parameters to be esti-
mated are respectively the means, the widths and the mixing
parameters of each component. The classical method for
estimating these parameters is the maximization of the like-
lihood (ML) procedure.

The literature is rich of works on the use of the ML pro-
cedure for estimating the parameters of mixture models, par-
ticularly Gaussian mixtures. The technique of maximizing
the likelihood function is based on the choice of the param-
eters most likely to give rise to the observed data. The use
of Gaussians is favored due to the applicability of the EM
algorithm which maximize a likelihood function. It is an
iterative algorithm for searching the optimal values of the
parameters. The EM algorithm consists of the iterative ap-
plication of the following two steps:
1. The E-step based on the current parameter estimates: the
posterior probability that the unitj is responsible of the gen-
eration of patternxk is estimated as:

hkj =
P old
j Gj (xk=j ; �

old
j �old

j )
PM

j=1 P
old
j Gj (xk=j ; �old

j �old
j )

(3)

2. The M-step in which we obtain the new parameter esti-
mates by:

Pnew
j =

1

N

NX

k=1

hkj (4)

�newj =

PN
k=1 h

k
jxkPN

k=1 h
k
j

(5)

(�newj )2 =

PN
k=1 h

k
j (xk � �newj )2

PN
k=1 h

k
j

(6)

The use of the EM algorithm to estimate the mixture
parameters supposes that the number of components is



available, which is determined by our algorithm. However,
the number of components itself is not sufficient. Indeed,
since the EM algorithm is an iterative algorithm, it requires
accurate initial values of the parameters. Each detected
component by the EFC procedure corresponds to a cluster
that is represented by its center. From the experience of
section 2.2., the centers of detected clusters are very good
estimation of the means of the modes in the histogram. This
gives an accurate initialisation of the means. Concerning the
estimation of initial values of the width� and the mixing
parametersPj , we use thenearest-neighborsclassifier
in relation with the estimated centers, and the following
known formula:

�2
j =

1

Nj

X

x2Sj
kx� �jk

2 (7)

Pj =
Nj

N
(8)

whereSj is thejth data set obtained by the application of
the nearest-neighbors classifier,Nj is the total number of
points classified inSj , andN is the total number of points.

Eq. 7 and 8 allow our algorithm to be used as initialisa-
tion procedure for the EM algorithm forpdfestimation.

4 Experimental results

In section 2.5, we were interested in evaluating our algo-
rithm, namely its capability to estimate the number of modes
in a multi-modal histogram. The algorithm must necessar-
ily be followed by the EM algorithm for estimating the his-
togram’spdf. In this section, we are interested in evaluating
our algorithm when it is associated with the EM algorithm
for pdf estimation. For this purpose, we apply both algo-
rithms (our algorithm and the EM algorithm) to estimatepdf
of artificial as well as real histograms.

4.1 Artificial histograms

Before estimating thepdf of the histogram in figure 1.a, we
are interested in determination in general the effect that our
algorithm brings to the EM algorithm for estimating of the
mixture parameters. Thus, we have designed an experiment
to study a comparison between results obtained using the
EM algorithm initialized by our algorithm, and results ob-
tained by the EM algorithm initialized by classical methods.
As classical initialisation of the EM algorithm, we use the k-
means algorithm to set the initial values of the parameters.
This comparison will emphasize the EFC procedure since it
is the only part which differs one procedure from the other.
Figure 4.a and 4.b show the results of the comparison for
a sample of 10000 histograms. For each histogram, we ap-
plied both methods, and for each method we computed the

Mean Square Error (MSE) between original and estimated
histograms. Then we graphed the number of histograms
having a given error as a frequency plot. This allows us to
identify the error around which each model is concentrated.
We remark that the error around which our model is concen-
trated is significantly less than for the classical method. This
shows the robustness of the EFC procedure.
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Figure 4: Frequencies of estimated histograms result-
ing with a given error x4:10�4. a) Histograms estimated
with our model (Average Mean Square Error:AMSE =
0:0132), b) Histograms estimated with classical method
(Average Mean Square Error:AMSE = 0:0308).

Concerning the histogram of figure 1.a, we testedK =
5; 6; 7. Figure 5 gives a graphic comparison between origi-
nal and reconstructed histograms for the three values ofK.
Table 4 gives the real parameters of the histogram of figure
1.a. Tables 5,6 and 7 gives detailed results of the applica-
tion of our algorithm respectively forK = 5; K = 6 and
K = 7.

Modes Means variances Mixing parameters
1 20 20 0.3
2 60 10 0.3
3 180 70 0.4

Table 4:Parameters of the artificial histogram

k-means before EM after EM
Cluster �j �j �j Pj �j �j Pj

1 19.5 19.5 10.7 0.23 19.9 20.0 0.29
2 64.4 64.4 18.4 0.44 60.4 9.1 0.30
3 115.9 - - - - - -
4 174.1 174.1 39.0 0.33 179.1 69.8 0.41
5 222.9 - - - - - -

Table 5: Result of our model on the artificial histogram,
K = 5

Note that since the artificial histogram is noise free, the
algorithm was applied without the smoothing operation. In
contrast, for the two real images of figure 1, we make use of
the smoothing operation.



k-means before EM after EM
Cluster �j �j �j Pj �j �j Pj

1 17.13 - - - - - -
2 55.32 55.32 20.53 0.41 49.96 22.56 0.61
3 94.79 - - - - - -
4 147.81 - - - - - -
5 186.97 186.97 90.41 0.59 182.76 73.63 0.39
6 215.97 - - - - - -

Table 6:Results of our model on the artificial histogram,K = 6

and� = 0:975.

k-means before EM after EM
Cluster �j �j �j Pj �j �j Pj

1 18.71 18.71 9.43 0.21 17.33 15.04 0.26
2 45.25 - - - - - -
3 63.61 63.61 18.84 0.33 54.18 11.54 0.34
4 112.18 - - - - - -
5 165.12 165.12 11.54 0.11 145.76 10.03 0.004
6 185.92 185.92 33.87 0.24 182.82 46.06 0.38
7 210.77 210.77 15.12 0.12 221.30 17.70 0.00028

Table 7:Results of our model on the artificial histogram ,K = 7

and� = 0:97.

4.2 Real histograms

As application on real image histograms, we have tested our
algorithm followed by the EM algorithm to estimate thepdf
of histogram of figures 1. b and 1.c.

Concerning image b of figure 1, the k-means algorithm
was applied withK = 9. Table 8 illustrates the result de-
tails, and figure 6 shows the reconstructed histogram using
the estimated parameters.
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Figure 5: Reconstruction of the estimated histograms. a)
K = 5; � = 0:97, b)K = 6; � = 0:975, c)K = 7; � =
0:97

Concerning image c of figure 1, the k-means algorithm
was applied withK = 5. Table 9 illustrates the result de-
tails, and figure 7 shows the reconstructed histogram using
the estimated parameters.

5 Conclusion

The proposed algorithm significantly helps histogram’spdf
estimation using mixture model. Indeed, it allows to ob-
tain a good estimation of the number of components in the
mixture, which is an essential parameter. With the determi-

k-means before EM after EM
Cluster �j �j �j Pj �j �j Pj

1 15.7 15.7 6.02 0.0051 18.25 0.71 0.005
2 43.2 - - - - - -
3 58.1 58.1 14.19 0.1811 57.64 3.03 0.181
4 94.4 - - - - - -
5 114.5 114.5 15.13 0.0032 110.13 3.16 0.0119
6 168.9 - - - - - -
7 189.9 189.9 6.98 0.4697 188.22 3.93 0.4620
8 209.0 209.0 3.58 0.3409 208.41 3.11 0.3401
9 238.5 - - - - - -

Table 8: Result of our model on the histogram figure 1.b,
K = 9
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Figure 6: an optical image histogram estimation. a)
Smoothing the histogram using the PNN Approach. b) esti-
mation of the parameters using the Gaussian mixture.

k-means before EM after EM
Cluster �j �j �j Pj �j �j Pj

1 53.73 53.73 17.40 0.21 50.51 19.72 0.2
2 96.48 - - - - - -
3 124.35 124.35 40.12 0.79 130.29 43.06 0.72
4 165.63 - - - - - -
5 208.39 - - - - - -

Table 9: Result of our model on the histogram figure 1.b,
K = 5
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Figure 7: radar image histogram estimation. a) Smoothing
the histogram using the PNN Approach. b) estimation of the
parameters using the Gaussian mixture.



nation of the number of components, the algorithm reduces
the necessity of human intervention for initializing the other
parameters of the mixture. Strictly speaking, it requires only
that the parameter� be specified in order adjust the algo-
rithm’s sensitivity tosmallmodes lying near a large mode.
This is clearly a parameter depending on the application in
question. The algorithm is robustw.r.t., the estimate of the
numberM of modes and the presence of noise (this point
is not detailed in this paper). A wrong estimate slightly af-
fects only the performance of the k-means algorithm, mainly
in terms of execution time. The EFC procedure suppresses
most false centers, which greatly facilitates the job of EM
algorithm at the last step when used forpdfestimation.

There are a number of interesting alternatives to the
choices made in this algorithm. For example, we could use
a more advanced data clustering algorithm such as fuzzy k-
means rather than the k-means algorithm. The k-means al-
gorithm has been chosen mainly for its simplicity. Another
example is thetolerant choice of the parameter
 for test-
ing the symmetry. Other choices (conservative, orstatistical
average) are equally valid. Finally, the smoothing operation
could also use many other existing techniques. Although
all these alternatives offer interesting directions for further
application of the algorithm, for example to extend it to a
mixture of Gammas to deal with many images whose his-
tograms are not mixture of Gaussians.
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