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Abstract

We present our most recent results about an ongoing
study addressing the comparison of various speckle reduc-
tion filters. In a previous work, we have concentrated on the
best Signal-to-Mean-Square-Error (S/MSE) ratio provided
by a complex Wavelet Coefficient Shrinkage (WCS) filter and
several standard speckle filters. Here we specifically address
the numerical behavior of the WCS filter over a change (1)
in the regularity and type of the wavelet (orthogonal versus
bi-orthogonal) and (2) in the wavelet coefficient threshold-
ing type (soft- versus hard-thresholding). We also present
measures of the variation of the S/MSE over a wide range
of the WCS filter parameters in order to provide information
on the optimal application range of the filter in practical sit-
uations. As in our previous work, tests are performed on
optical imagery with a simulated multiplicative Log-Normal
noise. The S/MSE ratio is measured after averaging the fil-
tered images over 16 diagonal shifts of the Discrete Wavelet
Transform (DWT) in order to approximate a shift invariant
DWT. Our experiments show, among other, that the optimal
threshold level depends on the spectral content of the image
and that the soft-thresholding scheme is the best choice for
images with high spectral content.

1 Introduction

The aim of this paper is to present recent results about an
ongoing study addressing the comparison of various speckle
reduction filters. In previous works [1, 2], we have con-
centrated on the best Signal-to-Mean-Square-Error (S/MSE)
ratio provided by a complex Wavelet Coefficient Shrink-
age (WCS) filter and several standard speckle filters that are
widely used in the radar imaging community (Lee, Kuan,
Frost, Geometric, AFS, Gamma and Oddy). It has re-
sulted that the complex WCS filter was among the best
ones, quantitatively and qualitatively. In particular, the fil-
ter was clearly outperforming the standard ones for images
with large speckle noise; up to 10% improvement on a low

spectral content image.

In the current work, we specifically address the numer-
ical behavior of the WCS filter over a change (1) in the
regularity and type of the wavelet (orthogonal versus bi-
orthogonal) and (2) in the wavelet coefficient thresholding
type (soft- versus hard-thresholding). In addition, we found
very much instructive to measure the variation of S/MSE
over a wide range of the complex WCS filter parameters,
because it provides much information on the optimal appli-
cation of the filter in practical situations.

The paper is organized as follows. In the next subsec-
tions, we provide some background about speckle statis-
tics and the measure we use to quantify the filtering pro-
cess. In Section 2, we describe the filters we are compar-
ing in this report. Section 3 presents a comparative results,
in tables and graphics form, for 2 standard filters and the
WCS filter with various wavelets (complex orthogonal and
bi-orthogonal) and thresholding procedures. A brief wrap-
up is given in Section 4.

1.1 Speckle

Speckle noise is a common phenomena in all coherent imag-
ing systems like laser, acoustic and SAR imagery. The
source of this noise is attributed to random interference be-
tween the coherent returns.

Fully developed speckle has the characteristics of a ran-
dom multiplicative noise. Theoretically, under the assump-
tion that the real and imaginary parts of the speckle sig-
nal have zero-mean Gaussian density, speckle intensity can
be shown to follow a Gamma distribution [3]. Experimen-
tal speckle distributions can deviate from the theoretical
Gamma distribution. For instance, Log-Normal distribution
satisfying

XLog�Normal = m exp
�
XNormal

p
2 log(M=m)

�
where Mand m are the mean and median values and



XNormal � N(0; 1), turns out to be a good speckle model
for high-resolution sea-clutter imagery [4]. Because our
comparative study originates from ocean surveillance appli-
cations, we are still retaining this distribution here.

1.2 Quantitative Measure

Letx be an image pixel corrupted by a stationary multiplica-
tive noisen such thaty = nx. Without loss of generality,
we assume noise of unit-mean (n = 1). Many standard fil-
ters require knowledge ofy, �y and�n. In practice,y and
�y are estimated locally, within a finite size window. Noise
standard deviation�n is given as an input filter parameter (or
estimated over a uniform area in the image).

A common way of estimating the speckle noise level
in coherent imaging is to calculate the mean-to-standard-
deviation ratio of the pixel intensity, often termed the Equiv-
alent Number of Looks (ENL), over a uniform image area.
Unfortunately, we found this measure not very robust mainly
because of the difficulty to identify a uniform area in a real
image. For this reason, we will only use here the S/MSE
ratio, defined as,

S=MSE = 10 log
�X

x2i =
X

(yi � xi)
2

�

and which corresponds to the standard SNR in case of addi-
tive noise. The filters retained in this study are described in
the following.

2 Speckle Filters

Standard speckle filters are the Median, Lee, Kuan, Frost,
Gamma and Geometric filters. They usually perform ef-
ficiently on most images (especially Frost and Gamma).
Wavelet-based filters are essentially based on a WCS ap-
proach that aims at obtaining an optimal trade-off between
good signal averaging over homogeneous regions and min-
imal resolution degradation of image details. We have
recently proposed such a filter, based on the Symmetric
Daubechies (SD) wavelets [1, 2].

2.1 Frost Filter

The Frost filter [5] is an adaptive Wiener filter which con-
volves the pixel values within a fixed size window with an
exponential impulse responsem given by

m = exp[�KCy(t0)jjtjj] Cy = �y=y

whereK is the filter parameter,t0 represents the location of
the processed pixel andjjtjj is the distance measured from
pixel t0. This response results from an autoregressive expo-
nential model assumed for the scene reflectivityx.

2.2 Gamma Filter

The Gamma filter is a Maximum A Posteriori (MAP) filter
based on a Bayesian analysis of the image statistics [6]. It
assumes that both the corrupted signal and the speckle noise
follow a Gamma distribution. The “superposition” of these
distributions yields a K-distribution which is recognized to
match a large variety of radar return distributions of land and
ocean targets. The estimatebx is given by

bx =
(�� L� 1)y +

q
y2 (�� L� 1)

2
+ 4�Lyy

2�

� =
L+ 1

L (�y=y)
2 � 1

whereL is the number of looks. We have putbx = y for the
pathological cases wherebx is negative or complex.

2.3 Wavelet Filter

Details about the theoretical foundation of DWT can be
found in numerous places. Here we will give a brief sum-
mary in terms of linear algebra and for a 1D signal. One
can extend the description to images, similarly than Fourier
transform, i.e. by processing rows and columns sequentially.

A one-level DWT of a vector �!x =
(x1; :::; xN )(representing the N samplings of a 1D sig-
nals) is represented by a (generally complex)N � N
block-circulant matrixW . The vector�!wof wavelet coef-
ficients is then simply given by�!w = W�!x . The inverse
transform is represented by a matrixfW such thatfWW = I .
If the transform is orthogonal, thenfW = W T , otherwise
the DWT is said to be bi-orthogonal. The fundamental block
of W is a2� L matrixB (L < N ) where one row operates
as a low-pass filter while the second is a high-pass filter.
The elements ofB depends on the (bi-)orthogonality and
regularity conditions imposed to the wavelet basis. Half
of the elements of�!wencodes the local details of�!x (the
so-called wavelet coefficients) while the other half encodes
the local tendencies. A multi-level DWT is computed via a
pyramid algorithm where a half smaller matrixW operates
on the “tendency” outputs of the previous level.



2.3.1 Wavelet Coefficient Shrinkage

Most of the wavelet speckle filters are based on the WCS
procedure for discrete wavelet transform [7]. Wavelet co-
efficients of a function are, in general, large in irregular re-
gions and small in uniform regions. If the function is cor-
rupted by a noise, this noise will dominate the wavelet coef-
ficients at finer scales and only few large coefficients will be
related to the strong singularity of the underlying function.
Thus, thresholding the noisy wavelet coefficients removes
most of the noise and preserves large coefficients. The two
more popular thresholding schemes are the so-called soft-
and hard-thresholding. In both cases, the threshold level
T is proportional to the noise standard deviationS. Hard-
thresholding consists in putting to zero all wavelet coeffi-
cients of amplitude smaller thanT . Soft-thresholding addi-
tionally reduces the amplitude of the other coefficients by the
quantityT . In practice, for Gaussian additive noise,S is es-
timated by the standard deviation of the wavelet coefficient
distribution at the finest scale, andT = �S, where� is a free
denoising parameter. For multiplicative noise, it is usual to
take the logarithm of the signal prior the wavelet transform.

The WCS procedure applies similarly on images, by
considering independent noise estimate and thresholding in
each of the 3 spectral bands (the so-called HH, HV and VH
blocks).

2.3.2 Symmetric Daubechies (SD) Wavelets

The WCS procedure is mathematically optimal for or-
thogonal wavelet transform (real or complex Daubechies’
wavelets). Use of complex Daubechies’ wavelets however
requires slight modification in the procedure in order to man-
age the complex-valued characteristic. We have proposed
the following one [1, 2]. We have numerically observed that
complex wavelet coefficients generally follow a bi-Normal
distribution (Figure 1a). Since the “spatial” properties of this
distribution is a characteristic of the image, it seems natural
to modify the WCS procedure in order to perform threshold-
ing that preserves the distribution eccentricity and the princi-
pal axes orientation. As a result, the threshold level becomes
angle-dependent and extends in proportion to the eccentric-
ity of the centered dispersion ellipse. Figure 1b,c shows the
effect of a hard- and soft-thresholding rule, respectively, on
the distribution of Figure 1a. Since the threshold curve is
completely set by the distribution eccentricity, one can take
� as the threshold proportionality factor along the first prin-
cipal axis. In addition, the complex wavelet distributions
are generally oriented differently in each block, and for each
level, for a 2D signal (image).

In our previous reports, we have restricted the compari-
son of the wavelet-based speckle filter to standard ones, us-

ing 6-tap (i.e.L = 2J+2 with J = 2) SD wavelets together
with a soft-thresholding scheme [1, 2]. It was shown that
the SD wavelet-based filter outperforms the standard ones,
especially for high-level noise. Here we want to investigate
more deeply the effect of changing the filter regularity and
the thresholding scheme. The selected wavelets is the J2
wavelet as well as the representative of the J4, J6 and J8
classes having the highest maximum value in the low-pass
filter [8]. The corresponding scaling functions allow exact
representations of polynomials of order 2, 4 ,6 and 8 respec-
tively.

2.3.3 Bi-orthogonal Wavelets

Another important set of wavelets are the spline-based
Cohen-Daubechies-Feauveau (CDF) bi-orthogonal
wavelets. These are considered by many authors as
the “wavelets of choice” for all kind of applications because
of their unique properties (e.g. real and symmetric with
odd support, possible integer scale implementation, etc.).
The above WCS procedure is not optimal for bi-orthogonal
wavelets. It has to be modified in order to incorporate
correlations between nonorthogonal wavelet coefficients.
A solution to this problem has been proposed recently [9].
The result consists in a modification of the� parameter
which becomes wavelet- and scale-dependent. We are
currently implementing this algorithm and the comparative
results will be reported soon. In the mean time, we found
instructive to test the robustness of a couple of bi-orthogonal
filters against the orthogonal WCS approach. The selected
CDF sets are the bi22, bi24, bi42 and bi44 wavelets for
which the support of the low-pass and high-pass filters are
(5,3), (9,3), (7,5) and (11,5), respectively. The synthesis
low-pass filters of bi22 and bi24 are the B-spline of degree 1
while the synthesis low-pass filters of bi42 and bi44 are the
B-spline of degree 3.

2.3.4 Shift Invariance

One disadvantage of the classical decimated DWT is its lack
of shift invariance. As a result, wavelet decomposition of a
signal differs when the signal is shifted by one data point.
Of course, this can modify the noise estimate in the WCS
procedure. One way to eliminate this drawback is to avoid
decimation during the DWT [10]. Of course, not all shifts are
necessary: for aN -level decomposition, only2Nshifts are
needed. In doing so, one can show that the inverse transform
is the average over all shifts of the decimated DWT [11].

As in our previous work, the S/MSE ratios we will be
reporting are the average of the WCS filter over shifts of the
input image. In practice, we found sufficient to restrict to 16
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Figure 1: llustration of elliptical thresholding rules on a complex wavelet distribution.

diagonal shifts (theoretically,2N�2Nshifts should be used).

3 Tests

We have simulated radar textured images by degrading
two aerial photographs (www.cent.org) with unit-mean Log-
Normal multiplicative noise. The two scenes (urban and
country regions) have very different spectral content in or-
der to observe their effect on the filters performance. Two
noise levels have been tested, corresponding to S/MSE ra-
tios of 4.4 and 9.8 dB. Figure 2 shows the original urban and
country images as well as the corresponding 4.4 dB noisy
images.

3.1 Best S/MSE

The best quantitative performance measures for the Frost,
Gamma and WCS filters are summarized in Table 1. Im-
age radiometry (image intensity) has been preserved by as-
suring that the enhanced and noisy images have the same
global mean. The best S/MSE is provided by the complex
wavelet filter with a soft-thresholding scheme. The two best
enhanced images (bold in Table 1) are depicted on Figure 3.

In all cases, the WCS filter outperforms the stan-
dard ones, and especially for the low spectral content im-
age (country image) with high level noise (4.4 dB). Soft-
thresholding scheme turns out to always give slightly better
S/MSE than hard-thresholding, with a lower threshold level
�.

3.2 Numerical Behavior of the Wavelet Filter

As mentioned in the Introduction, we report here about the
numerical behavior of the WCS filter over a change (1) in

the regularity and type of the wavelet (orthogonal versus bi-
orthogonal), (2) in the wavelet coefficient thresholding type
(soft- versus hard thresholding) and (3) in the variation of
the filter parameters. This provides much information on the
optimal application range of the filter in practical situations

Figure 4 first shows the variation of the S/MSE ratio for
a soft-thresholding scheme for the urban scene for 4 decom-
position levels, as function of the threshold parameter� and
for different wavelet types. The best result is obtained with
the complex J2 wavelet although there is not much difference
with J4, J6 and J8 wavelets. Surprisingly, the bi-orthogonal
b22 and bi24 wavelets perform quite well although the WCS
algorithm is not optimal for them. The bi42 and bi44 wavelet
are definitively not in the game. One also observes in Figure
4 that there is an optimal value for� above which the S/MSE
starts decreasing because of the oversmoothing of the image.

The position of the optimal S/MSE depends on the
wavelet (Figure 4) and on the number of decomposition lev-
els (Figures 5 and 6). Of all the wavelets used in the tests, J2
provides the best performances. Furthermore, there is no ad-
vantage in using higher-order wavelets (J4, J6 and J8); they
perform slightly less than J2 with a longer processing time.
Surprisingly, bi22 and bi24 perform quite well too, given that
the WCS scheme is not optimal for bi-orthogonal wavelets.

The wavelet thresholding scheme might limit the filter
performance. Figure 7 shows the variation of the S/MSE ra-
tio as function of�, for the urban and country scenes, using
soft- and hard-thresholding with the J2 wavelet. This is es-
pecially true for the urban image which has a high frequency
content. In addition, Figure 7 shows that the experimental
optimal threshold level depends on the frequency content of
the image. The enhanced images corresponding to the best
S/MSE with a hard-thresholding are depicted in the bottom
part of Figure 7.



Figure 2: Test images: original (up) and noisy @ 4.4 dB (bottom)

Frost Gamma Soft-with J2 Hard- with J2

Urban @ 4.4 dB 10.0 dB,K = 1:0, 3� 3 9.8 dB,L = 1:5, 3� 3 10.9 dB,� = 1:4 10.0 dB,� = 2:8
Urban @ 9.8 dB 13.4 dB,K = 3:0, 3� 3 13.3 dB,L = 7 , 3� 3 13.6 dB,� = 0:8 12.4 dB,� = 1:8

Country @ 4.4 dB 14.6 dB,K = 1:0, 7� 7 14.5 dB,L = 2:0 , 7� 7 16.3 dB,� = 2:0 16.0 dB,� = 3:4
Country @ 9.8 dB 17.4 dB,K = 3:0, 7� 7 17.7 dB,L = 8 , 7� 7 18.6 dB,� = 1:6 18.5 dB,� = 2:9

Table 1: Best S/MSE obtained during the tests



Figure 3: The two best enhancements @ 4.4 dB in Table 1 (bold)
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Figure 4: Wavelet denoising of the urban scene @ 4.4 dB and 4 levels
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Figure 5: Wavelet denoising of the urban scene @ 4.4 dB with J2
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Figure 6: Wavelet denoising of the urban and country scenes @ 4.4 dB
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Figure 7: Wavelet denoising of the urban and country scenes @ 4.4 dB with J2



4 Discussion and Conclusion

We have presented a numerical study of a complex WCS
speckle filter that specifically addresses the change (1) in
the regularity and type of the wavelet (orthogonal versus bi-
orthogonal) and (2) in the wavelet coefficient thresholding
type (soft- versus hard-thresholding). We also gave mea-
sures of the variation of the S/MSE ratio over a wide range of
filter parameters in order to get information on the optimal
application range of the filter in practical situations. Tests
were performed on simulated imagery with a multiplicative
Log-Normal noise. The S/MSE ratio was measured after av-
eraging the filtered images over 16 diagonal shifts in order
to approximate a shift-invariant DWT.

Our experiments show that the optimal threshold level
depends on the spectral content of the image. High spectral
content tends to over-estimate the noise standard deviation
estimation performed at the finest level of the DWT. As a
result, a lower threshold parameter� is required to get the
optimal S/MSE. The standard WCS theory predicts a thresh-
old that depends on the number of signal samples only [7].

The experiments also show that the soft-thresholding
scheme is always the better choice (in terms of S/MSE) espe-
cially for images with high spectral content. With a different
data set (i.e. 1D signals with additive Gaussian noise), other
authors have reported better results for a hard-thresholding
scheme when applied in combination with a shift-invariant
DWT [10, 11]. We believe the difference is a consequence
of the noise characteristics. Further tests are needed to clar-
ify this point.

Finally, as theoretically developped in [9], denoising with
bi-orthogonal wavelets requires a larger threshold than for
orthogonal ones. Also, some bi-orthogonal wavelets are
quite robust to the orthogonality requirement of the WCS
scheme. In particular, first order spline-based wavelets bi22
and bi24 performed almost as well as J2 wavelets which is
clearly the best choice of all. This indicates that a WCS
scheme that is properly adapted to bi-orthogonal wavelets,
i.e. that incorporates correlations between wavelet coeffi-
cients, could also yield a performant filter [9]. We are cur-
rently implementing such a scheme and test results will be
reported soon.
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