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Recognizing Plant Species by Normalized Leaf Shapes
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Abstract

In order to recognize plant species from their shapes,
contours of their leaves can be used. Leaves can be
classified using their structural property that a leaf con-
sists of triangular pieces that protrude around a poly-
gon. However their shapes have variations even though
they belong to the same species. Variations of leaf con-
tours can be represented statistically. However there
is variation caused by the large deformation of struc-
tural elements of leaves. Because tips of leaf veins can
bend according to their environment, shapes of pieces
can be deformed largely and influence the descriptions
of leaves. It is desirable such deformed shapes be mod-
ified to the original undeformed shapes of the leaves in
order to reduce the variation of the leaf shapes.

A leaf is considered to be composed of a number of
overlapping leaflets which have a single apex and have
symmetric shapes with respect to their veins basically.
In this paper, a method that normalizes shapes of leaves
1is presented using the symmetry of each leaflet with re-
spect to its vein. Recognition using normalized shapes of
leaves shows improved results compared with the method
using unnormalized leaves.

1 Introduction

Because there are a lot of plant species, it is helpful to
search a database of plant species using the features of
their shapes as indices. Leaves of plants have varieties
of shapes. Therefore we can use the features of the leaf
shapes in order to discriminate plant species.

We can consider that a leaf consists of leaflets that
are overlapped by each other. A leaflet has a single apex
which is a convex sharp corner and has a symmetric
shape with respect to its vein basically. Therefore we
can decompose a leaf into a number of triangular pieces
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that protrude around a polygon. Pieces of plant spices
have varieties of shapes. On each piece, there are a
number of teeth. In addition to such complexities of leaf
contours, they have variations even though they belong
to the same species. There are large variations caused
by deformation of structural elements of leaves. Tips of
leaf veins can be bent according to their environment
and this influences shapes of pieces largely.

There are few methods for recognizing plant species
which also use contours of leaves. Abassi [1] represents
contours of leaves using curvature scale space images.
However they use only peaks of curves in the upper part
of the scale space images to compare contours of leaves.
Such features can represent only global structures and
ignore the detailed shapes of leaves. Tsukioka [5] repre-
sents leaf contours using critical points of curvature of
them. However because of local variations of curvature
of them, the method does not work well.

A method for detecting a detailed pattern on a curve
is presented using wavelet local extrema[2]. They detect
regular sequences of types of wavelet extrema of contour
curvatures. However because shapes of teeth of leaves
are not so regular, the method does not work well for
detection of teeth.

Problems of the previous methods are lack of ability
of representing detailed shapes and inefficiency of repre-
senting variations of shapes. Because previous methods
described above do not assume any structural proper-
ties of leaf shapes, it is unclear which parts should be
represented more in detail and which parts have small
or large variations. The problem caused by deformation
of leaf veins cannot be solved if the structural properties
of leaves are not clarified.

In order to solve the problems, we have proposed a
hierarchical method for representing leaf contours [3].
We represent detailed shapes of leaves in addition to
global structures of leaves. We deal with relatively s-
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mall variation of contours by using statistical method.
However it is desirable that statistics are taken after
large variations caused by deformation of leaf veins are
removed because the variation influences descriptions
of leaves largely. We should use the properties of leaf
structures in order to remove such variations.

In this paper, we present a method for recognizing
plant species from their normalized leaf shapes using
their structural properties. We define a normal form of
a leaf shape as a form of which veins are straight. We
obtain features from normalized forms of leaves for rep-
resenting and recognizing leaves of plant species. The
results of the method show improved performance com-
pared with the method using unnormalized form.

This paper is organized as follows. In section 2,
we describe the hierarchical structure of leaf shapes.
Section 3 includes subsections about normalization of
leaves, representation of global shapes, that of local de-
tailed shapes and that of teeth. We describe a recogni-
tion method in section 4 and experimental results are
presented in section 5.

2 Shapes of Leaves

Shapes of leaves are classified into two types[6]. One is
simple and the other is compound. Compound leaves
consist of non-overlapping leaflets (Figl). Simple leaves
have no separate leaflets and we can consider them to
be composed of overlapping leaflets (Fig2,3). When
a simple leaf consists of a number of leaflets, we cal-
1 it a lobed leaf. Lobed leaves are classified to pin-
nately lobed leaves and palmately lobed leaves. Pin-
nately lobed leaves consist of leaflets that branch along
a main vein. Palmately lobed leaves consist of over-
lapped leaflets that branch from a base. The number
of the leaflets that constitute most of the palmately
lobed leaves is constant for the same species.

In this paper, we focus on the species that have pal-
mately lobed leaves. Contours of palmately lobed leaves
consist of the contours of leaflets that is not hidden by
the other leaflets. As a result, we can consider a leaf
consists of a number of triangular pieces (or lobes) that
protrude around a polygon (Fig.3). We call a sharp
convex corner of a leaf contour an apex and a sharp
concave corner a pit. Pieces of leaves for plant species
have varieties of shapes. In addition to such features,
there are teeth on contours.

Therefore we can represent leaves of the plant
species by three classes of features which constitute hi-
erarchical representation. The first class is for global
structures and shapes. The second class is for local de-
tailed shapes such as shapes of pieces. And shapes of
teeth are represented finally.

.
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Figure 1: Compound Leaves
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Figure 2: Simple Leaves

3 A Method of Representing
Leaves

Because the tips of pieces may bend according to their
environment, before describing features of leaves, it is
desirable to remove such deformation. From the nor-
malized shape of leaves, we obtain features at each class
of the hierarchy. In order to recognize plant species, we
represent the features statistically and recognition is
done based on a similarity measure which is defined as
probability.

3.1 A Method of Detecting Global

Structures of Leaves

Before we normalize shapes of leaves, we should detec-
t global structures of leaves because it is necessary to
know them in order to obtain an axis of each piece.
Because shapes of pieces are triangular, we can detec-
t each piece by an apex and two pits beside it. We
can find apexes and pits from the set of critical points
of curvature which is calculated from the leaf contour.
Because apexes correspond to critical points with high
positive values and pits correspond to critical points
with high negative values, we can select them based on
the critical values.

Contours of leaves are first smoothed enough to re-
move teeth on them [4] in order to get global shapes of
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Figure 3: Pieces of a Leaf

acandidate point
for abase

eadjacent to

virtual pit

Figure 4: A Bottom of a Leaf

leaves. This can be checked by distances between adja-
cent zero crossing points of curvature which represent
inflection points of the contours. Subsequently, we can
detect apexes by selecting critical points with positive
value which are larger than some threshold and can de-
tect pits between two adjacent apexes by selecting the
points with negative value which are smaller than some

threshold.

The region of two piece contours that are adjacent
to the base of a leaf is unclear because there are no pits
between the base and the apexes of the pieces (Fig.4).
We approximate the contour between the apex and the
base by two line segments that minimize the difference
between the sum of the length of two line segments and
arc length between the base and the apex of the piece
(Fig.9). We assume a virtual pit of the piece which
connects the two line segments (Fig.9,4). The base is
found in a region between the two apexes of the pieces
by measuring angles formed by three points. One is
a candidate point for the base and the other two are
the points which have certain distances from this point

(Fig.4).

Figure 5: Pairs of Symmetric points

3.1.1 A Method of Normalizing Shapes of

Leaves

We can find two points which are symmetric to each
other on contours if we assume that lower parts of
pieces do not deform so much. One of the candidates
for such points is a pit of each piece.
leaflet branches from a base, distances from the base to
the pair of symmetric points are the same. Therefore
we can find a point that is symmetric to the chosen pit
by measuring distance from the base(Fig.5). Therefore
we can choose a pair of symmetric points for each piece
by following procedure.

Because each

1. Among two pits of each piece, one which is farther
from the base is chosen for a point of the pair.

2. The point which have the same distance from the
base as the distance from the base to the chosen
pit is selected on the contour of the piece

e We start to search the symmetric point from
the pit which is not chosen to the apex

In Fig.5, lines which connect the base and the chosen
pairs are drawn.

Next, we find an axis of each piece. Because con-
tours of pieces are formed by connecting end points of
thin veins which branch in parallel from a main vein of
each piece, they are basically symmetric (Fig.6). How-
ever because of deformation of the axis, the contour
becomes asymmetric. The contour shape is unknown
in advance and it is difficult to detect veins of a leaf.
Therefore we should make an assumption on the de-
formation of the contour. We can consider that two
curves branch from the apex of the piece to the pair of
symmetric points obtained in the previous stage. We
assume the axis bend in one direction and becomes n-
early circular arc. Therefore we can assume every part
of each curve stretches or shrinks uniformly. Under this
assumption, we can obtain the axis of the piece by fol-
lowing procedure(Fig.7).
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Figure 6: Veins of a Leaf

A A

Figure 7: An axis of a piece

1. Each curve is divided into the same number of seg-

ments. Let nodes of each curve be aq,...,a, and
bi,...,by.
2. Mid points ¢; between a; and b; (i = 1,---,n) are

computed by ¢; = %T—i_b’ We can assume these

points lie on the axis.

3. The segmented axis is obtained by connecting
Cly.ee+yCp.

The obtained axis is straightened to normalize the
piece shape. Because the distances from the n-
odes of the axis to each curve are the same, we
can obtain the points on each curve by aligning
each segment (c;,c;41) along the y-axis and find-
ing points of which distances from the points ¢;

la; — b;]

are ——g—. Therefore the points on each curve

can be represented by <mi2;bi|, E§:2|Cj —¢j-1 |> and

<—|a—igﬁ.|, Bi_yle; — cj—1] | where the axis lie on the

y-axis. Some of the examples of normalized leaves are
shown in Fig. 8. They correspond to contours in Fig.

5.

iy

Figure 8: Normalized Shapes of Leaves
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Figure 9: Polygonal Approximation

3.1.2 A Representation of a Global Shape of a
Leaf

Using normalized shapes of leaves, we represent the leaf
contours hierarchically. Global structures of leaves can
be represented by sequences of alternate pits and apex-
es. We use the changed positions of the apexes for
representation. The polygonal approximations that are
obtained by the method are shown in Fig. 9.

3.1.3 A Representation of a Shape of a Mid-
most Piece of a Leaf

For further classification of leaves, we should represent
more detailed shapes of leaves. We use only the mid-
most piece of a leaf, because the hidden part of the
contour is small compared to the others and the shape
is more stable than the others. Because the curvature
of piece contours are low, we approximate the contour
using two line segments that minimize a difference be-
tween the sum of segment lengths and the arc length
between the pit and the apex of the piece. Some of the
results are shown in Fig. 10.
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Figure 10: Polygonal Approximation of A Mid-Most
Piece of A Leaf

3.2 A Representation of Features

We represent polygonal approximations that are ob-
tained by the methods by following features.

e The length of each line segment I; which is divided
by the perimeter of the contour of a leaf

e Angle formed by two consecutive line segments 6;

These features are represented statistically. This means
that they are represented by averages and variances of
their values.

3.3 A Similarity Measure of Leaves

We define a similarity measure as a probability based
on the statistics that are obtained by the method. We
assume that the distribution of each feature is normal
and independent to each other.

3.4 Detection and Representation of
Teeth

A tooth can be represented by an apex and two pits
beside it also. In order to detect teeth, contours are
smoothed slightly. However because slightly smoothed
contours have many triangles created by discreetness
of contours, we impose following conditions on critical
points that constitute teeth.

e The line that connects two pits should be included
inside the contour.

e The height and the base length of the triangles
should be larger than some threshold.

e Ratio of the height to the base length of the trian-
gles should be larger than some threshold.

Teeth are detected in order of their sizes and larger
teeth which are detected in following stage replaces the

oY
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Figure 11: Teeth of A Leaf

smaller one if they include only one tooth because the
tips of teeth can be detected in the stage of detecting
small teeth. An example is shown in Figll.

Teeth can be represented by the number, sizes and
shapes of triangles that approximate teeth . Each fea-
ture is represented statistically except the number of
triangles for each leaf. Teeth of each species are rep-
resented statistically by regarding these statistical fea-
tures as features for leaves. A similarity measure is
defined in the same manner as that of the global struc-
ture.

4 A Recognition Method

Recognition of species of leaves follows the similar pro-
cess of representing shapes of leaves. Features of global
structure and shapes are prior to those of the mid-most
pieces for classification. Features of mid-most pieces
are prior to those of teeth. First, teeth of leaves are de-
tected and the features are recorded for a sample leaf of
unknown species. This stage is done ahead of the other
stages because teeth are detected from the contour that
is smoothed slightly. Next the contour is smoothed e-
nough and a global structure is detected. Then the
shape of the leaf is normalized according to the struc-
ture. First, the leafis classified according to the number
of pieces. Second, features for the approximate shape of
the leaf are calculated and the leafis classified according
to the value of the similarity measure. If the classifi-
cation fails, the features for the shape of the mid-most
piece are calculated and the leaf is classified according
to the value of similarity measure. If it fails again, the
similarity measure for the features of teeth which are
recorded is used for the classification. If it fails again,
we try to append two pieces on the bottom of the leaf
or remove from the bottom of the leaf. If it succeeds,
the recognition process is repeated.
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5 Experimental Results

1st 2nd 3rd sum
(a) 0.083 | 0.000 | 0.583 | 0.666
(b) w 0.616 | 0.230 | 0.000 | 0.846
(c) 0.462 | 0.385 | 0.000 | 0.847
(d) 1.000 | 0.000 | 0.000 | 1.000
(e) 0.714 | 0.144 | 0.000 | 0.858
() 0.846 | 0.000 | 0.077 | 0.923
(g) 0.583 | 0.000 | 0.417 | 1.000

Table 1: Classification Rate for More than 5 Apexes for
Unnormalized Form

In this paper, 14 plant species are used for exper-
iments. There are about 10 to 15 testing samples for
each species. We choose a sample leaf from the set of
leaves as a test leaf to recognize and obtain statistic-
s from the other samples of the set. ”1st” in Tables
1,2,5,6 means the first stage of classification based on
the approximate shapes of leaves. ”2nd” is the sec-
ond stage of classification according to the shapes of
mid-most pieces. ”3rd” is the classification based on
the teeth. Tables 1,2 shows the classification rate of
leaves that have b or more than b apexes. For the leaves
that have relatively many leaves, the effect of normal-
ization is not so large. This indicates the deformation
of the pieces are not so large. Tableb and 6 show con-
fusion matrices. Columns of the table show inputs of
leaves for each species and rows show the outputs of
the system. Because two additional pieces are detect-
ed for some testing samples of the species (b), those
leaves are first compared to the species (d). However
because they are determined that they are not classified
to species (d), two pieces at the bottom of them are re-
moved and the procedure is repeated. As a result, they
are accepted as the species (b). Only 3 pieces are de-
tected for some testing samples of the species (f) and
they are compared with the species of 3 apexes. As a

1st 2nd 3rd sum
(a) 0.083 | 0.000 | 0.667 | 0.750
(b) W— 0.693 | 0.230 | 0.000 | 0.923
(c) 0.615 | 0.154 | 0.000 | 0.769
(d) 1.000 | 0.000 | 0.000 | 1.000
(e) 0.643 | 0.214 | 0.000 | 0.857
() 0.692 | 0.077 | 0.154 | 0.923
(2) T 0.583 | 0.000 | 0.417 | 1.000

Table 2: Classification Rate for More than 5 Apexes for
Normalized Form

1st 2nd 3rd sum
(h) ‘ 0.357 | 0.286 | 0.071 | 0.714
(1) & 0.308 | 0.308 | 0.153 | 0.769

&

)] .1 0.274 | 0.181 | 0.181 | 0.636
(k) * 0.071 | 0.715 | 0.000 | 0.786
1) * 0.083 | 0.333 | 0.167 | 0.583
(m) ‘ 0.333 | 0.133 | 0.400 | 0.866
(n) * 0.538 | 0.154 | 0.000 | 0.692

Table 3: Classification Rate for 3 Apexes for Unnor-
malized Form
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(@ [ () | (¢) | (d) | (e) (f) (8)
(a) | 0.666 | 0.000 | 0.000 | 0.000 | 0.071 | 0.000 | 0.000
(b) | 0.167 | 0.846 | 0.153 | 0.000 | 0.071 | 0.000 | 0.000
(c) | 0.000 | 0.000 | 0.847 | 0.000 | 0.000 | 0.000 | 0.000
(d) | 0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000
(e)
(f)
(8)

0.167 | 0.077 | 0.000 | 0.000 | 0.858 | 0.000 | 0.000
0.000 | 0.077 | 0.000 | 0.000 | 0.000 | 0.923 | 0.000
0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000

Table 5: Confusion Matrix for Species of More than 5 Apexes for Unnormalized Form

@[ ® [ © @60 e

0.750 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
0.167 | 0.923 | 0.231 | 0.000 | 0.143 | 0.000 | 0.000
0.000 | 0.000 | 0.769 | 0.000 | 0.000 | 0.000 | 0.000
0.000 | 0.000 | 0.000 | 1.000 | 0.000 | 0.000 | 0.000
0.083 | 0.000 | 0.000 | 0.000 | 0.857 | 0.000 | 0.000
0.000 | 0.077 | 0.000 | 0.000 | 0.000 | 0.923 | 0.000
0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000

)

=3

[¢]
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Table 6: Confusion Matrix for Species of More than 5 Apexes for Normalized Form

® 06 [O]0]m] .

(h) | 0.714 | 0.000 | 0.091 | 0.000 | 0.083 | 0.000 | 0.000
) | 0.214 | 0.769 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
) | 0.000 | 0.000 | 0.636 | 0.000 | 0.083 | 0.067 | 0.000

(k) | 0.000 | 0.000 | 0.000 | 0.786 | 0.000 | 0.000 | 0.000
)

0.000 | 0.000 | 0.000 | 0.000 | 0.583 | 0.067 | 0.000
(m) | 0.072 | 0.231 | 0.181 | 0.214 | 0.251 | 0.866 | 0.308
(n) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.692

Table 7: Confusion Matrix for Species of 3 Apexes for Unnormalized Form

®H 060 [0]0]m] o
(h) | 0.856 | 0.077 | 0.091 | 0.000 | 0.083 | 0.000 | 0.000
) | 0.072 | 0.769 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
) | 0.000 | 0.000 | 0.818 | 0.000 | 0.083 | 0.000 | 0.000
(k) | 0.000 | 0.000 | 0.000 | 0.786 | 0.000 | 0.000 | 0.000
) | 0.000 | 0.000 | 0.091 | 0.000 | 0.750 | 0.000 | 0.000
(m) | 0.072 | 0.154 | 0.000 | 0.214 | 0.167 | 0.933 | 0.077
(n) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.923

Table 8: Confusion Matrix for Species of 3 Apexes for Normalized Form
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1st 2nd 3rd sum
(h) ‘ 0.571 | 0.214 | 0.071 | 0.856
(i) & 0.230 | 0.230 | 0.309 | 0.769

&

G) | 0.454 | 0.182 | 0.182 | 0.818
(k) * 0.143 | 0.643 | 0.000 | 0.786
1) ‘ 0.500 | 0.167 | 0.083 | 0.750
(m) * 0.401 | 0.266 | 0.266 | 0.933
(n) * 0.615 | 0.308 | 0.000 | 0.923

Table 4: Classification Rate for 3 Apexes for Normal-
1zed Form

result, they are classified to the species (i).

Tables 5,6 show the classification rate of leaves of
3 apexes. In this case, the normalization improves the
performance of the classification. Especially, the clas-
sification rate at the first stage increases. Table7 and
8 show confusion matrices. Two additional apexes are
detected for some leaves of species (h) and (i). They
are compared to the species of b apexes and they are
not accepted as the species of b apexes. Addition of two
pieces are failed and two pieces are removed and tested.
As a result they are accepted as (h) and (i) respectively.
Two additional pieces are detected for some leaves of
the species (j) and they are classified to the species (b).
Some leaves of the species (j) which are unnormalized
are classified to the species (g). Two additional pieces
are detected for some leaves of the species (m) and they
are classified to (f).

6 Discussion

In this paper, we have present a recognition method
using normalized shapes of leaves. Examples of the
normalized shapes of leaves have shown the effective-
ness of this normalization method. Because the tips
of pieces usually bend in one direction, the simple as-

sumption we made in order to obtain axes of pieces can
produce desirable results. Most of the leaves that have
more than 5 apexes do not have effects of normalization.
This is because the tips of pieces of such species do not
bend largely. The normalization is quite effective for
the leaves which have three apexes.

Leaves of some spices have pieces which can bend
largely. However because of the height of their pieces,
effect of the normalization is small. Leaves of such
spices are shown in the sixth row of the table 1,2.

Some leaves are classified to the other species be-
cause the number of pieces is different from that of
standard leaves of the species. This is because there
are large teeth which can be regarded as pieces near
the base. Leaves of some species have pieces that are
inherently small near the base. Some leaves of such
species have a little bit larger pieces. In such cases,
more pieces may be detected than expected.
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