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Abstract

The use of Fourier transform for deconvolution of noisy

signals and the problem of the division in the trans-

formed side are briefly discussed. Comparison between

many deconvolutions of noisy signals with and without

partial Savitzky-Golay filtering of the transformed func-

tions is presented. Simulations with analytically known

functions show that a proper deconvolution method can

produce correct result, at least for moderately noisy

functions. 

Introduction

The response  of a system, having  the character-

istic function  (impulse response function), when

driven by an input function  is given by the convo-

lution of  by , defined as follows:

(1)

Obtaining  from  and  is straightfor-

ward. If the only available signals or functions are 

and , extracting  from them entails the so-

called deconvolution process. Direct extraction of 

from the integrals in Eq. 1 is not so easy. Fortunately,

once the functions are Fourier transformed, the opera-

tion becomes simple, Eq. 1 can be written as:

(2)

Hence, the deconvolution can be performed as follows:
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(3)

At first glance, using Eq. 3 for deconvolution seems

straightforward and easy. Nevertheless, since Eq. 3 in-

volves a division, major difficulties appear when 

and  are digitized and noisy signals. If, particularly

the denominator function, departs from the correct ana-

lytical value, particularly for its values near to zero, the

deconvoluted signal will be greatly distorted. These de-

partures may have two sources: the inaccuracies inher-

ent to the discrete Fourier transform (DFT), and noise.

As discussed elsewhere [2], we have developped a very

accurate method to approach almost as much as one

wants the exact analytical Fourier transform of a func-

tion from its digitized version. So the problem of inac-

curacies due to DFT may be considered as cleared. The

second difficulty is due to the noise.

Deconvolution of noisy signals

A division of a function, noisy or not, by another noisy

function gives a noisy result. When the denominator

function gets close to zero, there is almost an “explo-

sion” of noise in the result of the division. Hence, it is

often said, and sometimes written [3], that the division

in the transformed side generates noise. One should pre-

fer the more correct formulation of [1]: “... the presence

of this noise may give rise to a mathematically exact re-

sult that has no physical significance.” Fourier trans-

form deconvolution is then often considered as

impraticable. Nevertheless, it remains attractive because

of its straightforwardness. Let us look, through few ex-

amples, at the performances of the Fourier transform for

deconvolution and, at an attempt to solve, at least par-

tially, that noise problem.

Defining the characteristic function1 of a system as,

(4)

and the input function as,

(5)

one can compute the convolution of Eq. 4 and Eq. 5 to

obtain the somewhat elaborated expression for 

expressed in Eq. 6.

1. We use one dimension causal functions and the

convolution integral between the limits  and .
The ideas discussed here remain valid for n-

dimension non-causal functions between  to

.
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In the present example, the following numerical values

for parameters will be used: ,

, , , ,

,  and . 

Now, let us use 25 functions  and 25 functions

 as previously defined by Eq. 4 and Eq.  respec-

tively but, this time, with Gaussian noise added to each

of them. The standard deviation  of the noise is set

to  so that the peak amplitude  of the

noise is approximately 1% of the maximum value of the

functions. On the average, on all the interval

 it gives a noise of 2.8% on  and 4.7%

on . The functions  and  are equidis-

tantly digitized for a number of points .

We want to recover the function  from numerical

deconvolution of the noisy functions  and .

First, the deconvolutions are numerically performed ac-

cording to Eq. 3. Fig. 1-A shows the results. The black

curve is the exact resul given by Eq. 5. The grey back-

ground is the stacking of the 25 results obtained by the

deconvolution of the 25 pairs of the noisy functions

 and . Second, the 25 deconvolution are

again numerically performed according to Eq. 3, but this

time a Savitzky-Golay filter of order 2 with a width of

25 points has been partially applied on the transformed

functions. (The author has developped a Maple2 pro-

gram that gives the Savitzky-Golay coefficients for any

order and any number of points, symmetrically or asym-

metrically. One can find theory, examples and further

references about Savitzky-Golay filters in [4]. In the

present paper we have used the Savitzky-Golay filter

provided by the software Igor from WaveMetrics)

The transformed functions exhibits narrow peaks. Ap-

plying the filter everywhere would have clipped these

peaks and then distorted the results. Since the values of

the transformed functions in the peaks are not close to

zero, the result of the division is not very sensitive to

noise, so there is no needs to filter in these regions. We

have merely applied the filter when the modulus of the

2. Maple is a powerfull symbolic and numerical
math. software, by Waterloo Maple Software.
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denominator function ( ) was one tenth of the

modulus of its characteristic peaks. The results are

shown in Fig. 1-B. Grey curve of Fig. 1-C shows the

standard deviation function of the 25 deconvolutions

without filtering. Black curve of Fig. 1-C shows the

standard deviation function of the 25 deconvolutions

with filtering. On the average, the standard deviation

function with filtering is about 3 times smaller than the

one without filtering. It is not a dramatic but a signifi-

cant improvement.
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Fig. 1. Deconvolutions of noisy functions.
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The black curve of Fig. 2 is the exact result . The

slightly oscillating grey curve of Fig. 2 is the average of

the 25 deconvolutions without filtering. The other grey

curve of Fig. 2 is the average of the 25 deconvolutions

with filtering. 

Conclusion

First, as shown by curves in Fig. 1, an adequate limited

filtering can significantly reduce the dispersion of re-

sults, without, as do inevitably any filter, introducing too

much distortion. Second, the results of the average of

deconvolutions displayed by Fig. 2 show that Fourier

transform deconvolution of noisy signals is not imprati-

cable. Increasing the number of deconvoluted pairs of

signals or increasing the number of system’s character-

istic signals  to be deconvoluted with a given num-

bers (possibly only one) response signals  would

indeed improve the averaged result. We can even con-

jecture that paradoxically, designing a proper filter in

the transformed domain could be more efficient in two

or more dimensions than in one because each filtered

point is surrounded by much more than two immediate

neighbours.
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