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Abstract

We propose a contour detection method
based on the mechanisms from biological visual
perception. The temporal analysis of image is the
basis of the model. The temporal notion means that
the static image is transformed into a data flow.
Each element of the flow is treated independently
from the others. Our aim is image segmentation
through contour detection. The model is composed
of a succession of five stages: noise reduction,
asynchronous processing, isotropic filtering and
adaptive smoothing, dynamic thresholding, and
temporal integration. To evaluate the proposed
approach, objective and subjective analyses are
performed on synthetic and actual images.

INTRODUCTION

The usefulness of contour detection in a
great number of applications has been well
established and demonstrated. Indeed, this
operation is of great help for further image analysis
and scene understanding. There are many kinds of
edge detectors [18-19]. Most of them are based on
derivative operators that give a high response at the
contour points and a low response in homogeneous
areas. The oldest and simplest edge detector is
undoubtedly the digital gradient
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operator. However, its usefulness in image
processing is limited, since it is not an isotropic
operator. Given the bidimensionality of the image
signal, one has to ensure rotation-invariance in the
design of a derivative operator. The gradient
magnitude fulfills this requirement but the gradient
vector does not. This limitation has led to the
development of many directional gradient filters
[13]. In contrast, the laplacian filter is an
orientation-invariant derivative operator. However,
because of the second-order derivative, this
operator is more sensitive to noise than the gradient
operator. One can reduce the effects of noise by
smoothing the image before applying the laplacian.
Marr and Hildreth adopted this strategy for
designing the well-known LOG (Laplacian of
gaussian) filter as a contour detection operator [14].
Other edge detectors, such as the Sobel one, are
based on the same principle. However, now, no
universal contour detection method has emerged.
Furthermore, as compared to the great number of
investigations in this field, a little effort has been
spent on the design of a quantitative evaluation of
the contour detection, except the pioneer work by
Abdou and Pratt [22], the one by Canny [15], and
other few similar works [23]. In Canny’s approach,
three performance criteria for good detection are
defined. However, there is an inevitable trade-off



between contour localization accuracy and
detectability, as noticed by Perona and Malik [5].
These authors propose a novel method inspired
from Koenderink’s work [16], using an anisotropic
diffusion process, and based on three
criteria:causality, immediate localization and
piecewise smoothing. The idea of using anisotropic
diffusion has led many other researchers to develop
similar approaches for image filtering or image
enhancement [6]. However, most of these
sophisticated methods, which have been proved
efficient for given images, are criterion oriented.
Some requirements, irrespective of the image
content, must be satisfied for the design of the
oriented image treatment. Moreover, some
parameters are chosen empirically. For instance, in
the method of Perona and Malik, the edge
sharpening depends on the diffusion function, which
is selected in a heuristic manner. Furthermore, no
convergence criterion has been specified in their
iterative method, as noted by Gerig et al [8].
Another important point, which has not been widely
discussed in almost all the edge detection methods,
is the influence of the visual perception criteria on
the design of the contour detection method. This
observation has motivated us to propose another
approach, which takes into account some
knowledge of human perceptual mechanisms. Not
only does the proposed method take into account
spatial information content, as in almost all the
known methods, but it also considers the temporal
information as the human visual system does. The
introduction of the time parameter in the treatment
is justified by some psychovisual and physiological
experiments as reported in [2,3]. It should be
noticed that the time parameter is also introduced in
the anisotropic diffusion equation used in image
enhancement [17], in contour detection [5] and in
image filtering [6]. However, in all these methods,
the time variable has not its actual significance. For
example, in the Perona and Malik’s method and in
Gerig et al’s one, the t parameter plays the role of
the iteration number. Moreover, the cited
computational approaches for contour detection
consider the image as static information: the image
pixels are taken as a whole set at a given instant of
observation. Obviously, this is of a great advantage
when the image is processed by a parallel
architecture machine. In fact, some physiological
and psychovisual experiments show that when an
image is captured by the human visual system, all

the image elements are not processed at the same
time. These results have been used as the basic
guideline in the design of architecture for
asynchronous visual indexing system [24].
Following this idea, an asynchronous contour
detection scheme is proposed in the present
contribution. As in [1], the asynchronous model,
presented in section ΙΙ is based on the
transformation of a static image into a temporal data
flow. One of the novel features of the present model
is that it considers only the innovation in the image
temporal analysis. We call this phenomenon″
exclusive asynchrony.″ Another specificity of the
proposed approach rests upon the treatment of this
data flow for edge detection. Instead of using edge
operators in each temporal stage, we use the method
of Kundu and Pal [7], which is based on the well-
known Fechner-Weber law. Indeed, one way to
quantify our ability to resolve two stimuli, which
are the same except for their intensities or
luminances, is to measure the just-noticeable
difference (J.N.D). The JND is used as a basic
guideline in Kundu and Pal’s method in order to
detect the meaningful edges in the observed scene.
Thus, this paper deals with the processing of
discrete pictures based on these visual properties.
We believe that the decomposition of the image into
a data flow allows an easier treatment and makes
the scene interpretation less ambiguous. Indeed, in
real-world vision, the images often contain partial
information of several different types in each part of
the image. The aim of this paper is not to compare
the proposed method with all the existing contour
detection algorithms. Our main purpose is to
demonstrate the efficiency of a model based on
visual perception mechanisms for contour detection
and to improve the methodology such as proposed
by Kundu and Pal.

THEORY OF THE MODEL

The proposed model consists of five
stages, as done approximately in the visual system.
This contour detection method is computationally
expansive but it is the price to pay for good contour
localization.

ΙΙ .1 The noise reduction step

The first stage of the model (fig 1)
concerns noise reduction.



The noise is generally supposed to be additive,
uncorrelated to the image, and generally localized at
high frequencies. To reduce the noise effect, we
apply to the image signal a low filter, with a
gaussian impulse response. The choice of this filter
is motivated by the separability that it allows within
the variables, which is time saving, and by the fact
that it offers a good trade-off between good noise
reduction and good preservation of the details in the
image. The application of this linear filter, the
impulse response of which is h (x,y), to the image
signal I x y( , )provides a signal A (x, y), given by
the following convolution:
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ΙΙ .2 Exclusive asynchrony

In the second stage, we introduce the
notion of asynchrony. Asynchrony means that the
various levels of the image are not processed at the
same instant [1]. The experience of Hess [2], shows
that if one considers two neighbor objects, a clear
one and a darker one, together in movement in an
orthogonal direction to the line joining them, the
clear object is perceived in advance of the darker
one, even when they have the same speed. The
pendular experience of Pulfrich confirms this
phenomenon. A clear static object is perceived
more rapidly than a dark object [3]. Thus, a
maximum of intensity or luminanceΙmax is
associated with weak response delayτmin and
reciprocally, to a minimum of luminanceΙmin

corresponds a high response delayτmax. Delaysτmin

and τmax are supposed equal to 2 ms and 22ms
respectively. The interval between such values
appears to be physiologically a plausible one [4]. In
the visual system, the relationship between the
luminance and the time necessary to the transfer of
the signal (time delay) is a non-linear law. The
delay decreases rapidly for strong luminances and
remains almost constant for weak ones. In the
model, as in [2,3] the luminance obeys the rule:
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Consequently, the image is transformed into a data
flow according to this law.
The coefficientδ is given by: δ= Amax.τmin
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3 ).

Amax represents the maximum level in the
perceptible luminance range of the actual image. At
the instant t within the interval [τmin, τmax], all the
points of the image are processed if the associated
luminance verifies the condition:
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In the present method, only the innovation at a
given instant, as compared to the preceding instants,
is taken into account, which means that, at a given
instant t, only new intensities are considered. That
leads to what we call,″exclusive asynchrony″.
Thus, if B (x, y, t) indicates the innovation at a
given instant t, one has:

( )4dt)+ty,A(x,t)y,B(x,<)ty,x,(A ≤ ,

where B (x, y, t) represents the innovation. As it
will be seen in sectionΙΙΙ , the choice of the time
step dt is determinant for the results.

ΙΙ .3 Isotropic linear filtering and
adaptive smoothing

A band pass isotropic filter is applied to
each element of the data flow. This filter is used to
smooth homogeneous regions and to enhance edges.
The resulting signal C (x, y, t) is linked to B (x, y, t)
by the following convolution:
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where ρ andξ are normalization constants, such as
2
3

2
2 .. σζ≥σρ [21]. This operation is followed by a

diffusion process, which controls the appearance of
edges in regions of strong contrasts and to
homogenize regions with small variations of
luminance. We perform one iteration of the
adaptive smoothing used in [6,8] by convoluting B
(x, y, t) with a decreasing function g(x,y,t). The
function g(x,y,t) is similar to the one used in [5] and
depends on the difference signal C(x,y,t. Then the
obtained signal is:
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Where K is an adaptation constant [5].

ΙΙ .4 Dynamic thresholding

This operation is the stage of decision in
our model. The well-known Weber-Fechner law is
performed to choice the contour detection
thresholding in each image element of the data flow.
This rule, for a given object, provides with the just
noticeable difference L∆ of luminance (J.N.D), or
threshold of luminance, according to the
background luminance L [25]:

(7)1LKL =∆

Where, K1 is the Weber constant, and its order is
somewhat of 2%. This law is used as a basic
criterion to detect significant edges.

a° Local contrast
One calculates at every pixel of the image

obtained from the precedent stage, a local contrast.
This contrast is given by:
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The numerator of the equation (8) is nothing more
than the gradient gray level. It is given, by the
average of the different responses obtained through
the application of a series of directional Gabor’s
filters. The choice of the Gabor’s filter is justified
referring to the visual cortex behavior [9]. If one

calls ),( yxG k the response of the Gabor’s filter in

the θk direction, and ),( yxFk the response

associated with this filter, then one obtains:
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The mean value of the gradient, for N directions, is:
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The expression of ),( yxGk is the one proposed by

Daugman [9]:
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Where ψ is a factor of normalization.σ4 and σ5

define the size of the filter. They are such that

88.1
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as reported in [10] (for simple cells of

the visual cortex V1 associated with the X ganglion
cells of acute vision [20]). The denominator in

equation (8), ),,( tyxD , represents

the average level of the close neighbors of the
considered pixel in a window of size w=nxm. The
associated expression, as used by Pal and Kundu
[7], adapted to our case, is
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The gray levels of neighbor pixels are weighted by
the inverse of the distance that separates them from
the center of the window. In accordance with the
idea of Kundu and Pal, a point of the image at the
instant t is said to belong to the contour if its
contrast, defined by equation [8], satisfies the
condition:

(13).E),,( min≥tyxE

Where Emin represents the minimum contrast related
to the maximum contrast Emax by :
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b° Decision stage

The maximum contrast is computed by analyzing
the whole image. The result of the step is a binary
one and it is provided by:

(15).

elsewhere0

E),,E(if255

),,(
min







 ≥
=

tyx

tyxT

ΙΙ .5 Temporal integration

The different images, that are provided by
the preceding stage are superimposed to constitute
the final image S (x, y) [11, 12]:
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ΙΙΙ Experimental results and discussion

In this section, we present some results
obtained by our model. We also discuss on the
choice of the different parameters used for the
model. As previously said, the use of the temporal
processing can avoid all saturation of the segmented
image. It allows a better recognition of the object,
by gradually presenting the object characteristics.
The most prominent information in the image
appears at first sight.
In the preceding relationship between luminance
and time (equation (2)), the luminance decreases
rapidly. There is instant ts at which the saturation
starts. In order to limit this saturation, we stop the
image processing at ts. The instant ts can be written:

dtt s .min γ+τ= , where dt is the time step,

depending on the characteristics of the image, and
γ, the number of iterations. The various parameters
that have been cited in the theoretical part of the
paper are associated with the following values:
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The standard deviation of the gaussian filter is
assumed 0.25. This method is applied to synthetic
and actual images.

ΙΙΙ .1o Synthetic image

In order to test the reliability of our
algorithm, we have synthesized a test image. The
image is constituted by two regions. A background
of luminance value Lb and a central object of
luminance L0, and such that Lb > L0 (figure 2a). In
order to simulate a real situation, a gaussian noise is
added to the image obtained after a smoothing
process. The luminance of the object is 64, and the
one of the background, 128. The result obtained
trough the application of the proposed model on the
test image is presented in figure 2b. The contour
lines are clearly perceived and the central object is
well separated from the background. Furthermore, a
substantial reduction of the noise is noticed.
Nevertheless, if one increases the number of
iterations γ, an amplification of the noise occurs,
and the contours become less visible (figure 2c).
The time step is equal to 0.25 in both cases. For
these two cases, it could be noticed that the squared
borders are well localized. This result is an
objective criterion to judge of the efficiency of the
proposed method.

ΙΙΙ .2° Biomedical application

The biological area could be an interest
field for the application of the method. One knows
that a medical image often presents a weak contrast
that makes ineffective the operators of classic
differentiation. Figure 3b presents the result that we
have obtained on a cross section of the brain (figure
3a). The various structures in this section are clearly
visible. As compared to Kundu and Pal’s approach
(Figure 3c), our approach seems to bring more
information. In the considered case, the time step is
equal to 0.5 and the number of iterations, equal to 6.
The parameters used in the comparison correspond
to the optimization of both methods.

CONCLUSION

We have tried to show that algorithms
based on human vision can improve the detection of
contours in the image. The″exclusive asynchrony″
processing that we apply can simplify the
recognition of objects. Of course, controlling the
diffusion of prominent elements of the data flow is
supposed. The method allows a good location of
contour lines and a reduction of the noise.



Exclusive asynchrony could be used in several areas
and applications, such as image compression.
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Figure 3c
Kundu and Pal model

α1=0,α2=0.1,α3=0.9,β=4%

Figure 2a
Test image

Figure 2b
dt=0.25,γ=1

Figure 2c
dt=0.25,γ=3

Figure 3a
Cross section of

the brain

Figure 3b
Our Model

dt =0.25,γ=6
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