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Montréal(Qc), Canada, H3C 3J7
<bonnevil, meunier>@iro.umontreal.ca

Abstract

This paper introduces a new efficient method for finding the
optical flow for a special type of motion and smoothness
constrain. The optimisation is mapped into a maximum-flow
problem in a graph, which is solved efficiently and leads
to an optimal solution. Previously, similar methods were
used to solve stereo correspondence [11, 9] and maximuma
posteriori estimation problem in Markov random fields [2,
3, 6, 10].

After a general introduction to optical flow, we present
a modified version of Horn and Schunck’s method [7],
then we present how we map the optical flow optimisation
problem into a flow graph. Experimental results on simu-
lated data are then provided and compared to the modified
Horn and Schunck’s method. They clearly show the po-
tential of our formulation with normalised errors of9:90%
with our method vs.19:87% with the Horn and Schunck’s
method. Both algorithms were also tested with realistic data
in cineangiographyof artery to assess blood flow. Again, our
method shows a better velocity profile assessment (1:97%
vs. 8:32% of error). These results were expected because
the maximum-flow formulation is not iterative and leads to
a global optimum.

1 Introduction

There is an abundant literature about the computation of the
optical flow (see Barronet al. [1] for a summary of the
major methods). In this paper, we focus our attention on
the optimisation involved in a special gradient-based method
and show how to map the optimisation into a flow problem
in a graph. Similar works have been done in the field of
stereo correspondence [3, 9, 11], image segmentation [10]
and maximuma posteriori estimation in Markov random
fields [2, 3, 6]. Before getting to our method, we introduce
the basics of gradient-based optical flow calculation [1, 7],
then we present a modified version of Horn and Schunck’s
algorithm [7] and finally, we proceed with our new method

based on a maximum-flow formulation.

2 Optical flow

A 2-D sequence of two or more images is mathematically
described as a functionI(i; t), whereI is the image in-
tensity at timet and at positioni = (x; y) 2 S and
S = f0; : : : ;m � 1g is the set of all pixels. By the chain
rule of derivation, we obtain a formulation for the total rate
of change of brightness
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where@I=@x, @I=@y and@I=@t can be computed directly
from a pair of imagesI(i; t) andI(i; t + �t) and will be
abbreviated byIx, Iy andIt. It remains to determine the
brightness changedI=dt and thex and y components of
velocity, denoted byu = dx=dt andv = dy=dt respec-
tively. To solve equation (1), for the velocities(u; v) and the
brightness changedI=dt, additional constraints must be ap-
plied to restrict the allowable motions. Such constraints are
constructed according to prior knowledge we have about the
real motion and brightness change. Horn and Schunck [7]
suppose the intensity is conserved, so the brightness change
of a particular point in the image is equal todI=dt = 0.
Equation (1) is rewritten as

dI

dt
= Ixu+ Iyv + It = 0 (2)

Because this is a single equation with two unknowns, Horn
and Schunck [7, 1] added a smoothness constraint to solve
the optical flow. We now proceed with our modified version
of their algorithm.

2.1 Modified Horn and Schunck’s method

In our applications, we setv = 0 because there is no motion
along they-axes. Equation (2) is reformulated as

Ixi
ui + Iti = 0 (3)



Letfi = ((ui; 0))
T designate the optical flow vector at pixel

i. Thus,f = ffi j i 2 Sg is the optical flow field to com-
pute. Equation (3) shows that we can find a unique solution
by settingui = �Iti=Ixi

(if Ixi
6= 0). But, when noise

is taken into consideration, additional constraints must be
imposed on the flow in order to find a solution that reflects
some prior knowledge about the real flow field we are seek-
ing. Thus, we should instead minimise

V (Ii j fi) = (Ixi
ui + Iti)

2 (4)

whereV (Ii j fi) is the likelihood potential ofIi know-
ing the motionfi. An important constraint reflecting prior
knowledge about the field is smoothness. The flow at nearby
pixels in the image should be similar because the motion
of intensity points of an object presents some coherence
and therefore the flow in a neighbourhood should change
smoothly. One way to ensure such coherence is to constrain
the local change in velocity by minimising the squared mag-
nitude of thex-derivative of the velocity over the whole set
of pixels S:

V (fi) = (
@ui
@x

)2 (5)

whereV (fi) is called the prior potential. The posterior po-
tential is obtained by combining equation (4) and equation
(5) into a weighted sum,

V (fi j Ii) = V (Ii j fi) + �V (fi) (6)

The problem of finding the optical flow can be reformulated
as the minimisation of the posterior energy, which is the in-
tegration, over all pixelsi 2 S, of the posterior potential
described by equation (6)

E(f j I) =

Z

S

V (fi j Ii) dS (7)

A solution to this minimisation problem is obtained by vari-
ational calculus and an iterative form of the solution is [7]

uk+1i = uki �
(uki Ixi

+ Iti)Ixi

� + I2xi

(8)

whereuki is the local average (excluding the current pixel
velocity ui) of the velocity in a neighbourhood centred at
pixel i at thekth iteration. Because of the iterative aspect of
the algorithm, we have setu0i = �Iti=Ixi

. This is correct,
because it corresponds to the minimum of the likelihood po-
tential of equation (4) if we suppose no smoothness (i.e. we
start with the most noisy flow field and we later smooth it).

There are many drawbacks in the solution provided by
the iterative form in equation (8). First, there is no guaran-
tee of reaching the global minimum of the posterior energy
of equation (7). As a result, there will be a lack of global

smoothness in the flow field (in our application to the calcu-
lation of the blood flow in artery, it is crucial to have global
smoothness). Second, we need to set the number of iteration
or some stopping criteria and we don’t have any guarantee
of convergence.

In the next section, we present a new method to compute
the global minimum of the posterior energy with a slightly
different prior potential.

3 Maximum-flow method

In our new method, we use a graph formulation of the prob-
lem of finding a suitable motion field. In this way, we
have to bound and discretize the valuesu can take. This is
correct, because differential optical flow methods are only
valid to recover small motion. We defineU = fu : u =
umin + h�u; h = 0; : : : ;M � 1 = (umax � umin)=�ug
as the set ofM finite valuesu can take.

Because of some limitations of our algorithm, we cannot
use the same smoothness constraint as the one described in
equation (5). Instead, we constrain the local change in ve-
locity by minimising a weighted sum of the absolute value
of thex andy components of the velocity gradient:

V (fi) = C1j
@ui
@x

j+ C2j
@ui
@y

j

whereC1 andC2 are positive constants. A discrete formu-
lation of this prior potential is then

Vi;i0 (fi; fi0) = �(i; i0)jui � ui0 j (9)

where�(i; i0) is a positive function defined on the neigh-
bourhood systemN = fNi : i 2 Sg, whereNi is the set of
pixels in the neighbourhood of pixeli, such thati =2 Ni.

The problem of finding a suitableu can be restated as
the minimisation of the following posterior energy

E(f j I) =
X
i2S

X
i02Ni

�(i; i0)jui � ui0 j +

X
i2S

V (Ii j fi) (10)

3.1 Maximum-flow formulation of the energy
global optimisation

In this section, we will show how a particular flow problem
in a graph can be used to optimise globally the posterior en-
ergy function of equation (10). Recall that the objective in
a maximum-flow problem is to maximise the flow between
two points, the sources and the sinkt via various interme-
diate junctions. A maximum-flow problem can be modelled
by a graph (see figure 1). The source, the sink and junc-
tions are represented by vertices, while the edges represent
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Figure 1: ow graph used to minimized the posterior
energy funciton of equation (10). The source s is
connecte to all assignments with velocity u = umin

and the sink t is connected to all assignments with
velocity u = umax+�u. The neighborhood system
N used in this �gure the 4-neighbors neighbohood
system.

the ”pipes” through which ”material” flows. The capacity of
an edge represents the maximum amount of flow that can go
through it.

A cut through a flow graph is any set of edges that con-
tains at least one edge from every path from the source to the
sink (see figure 1). The cut value is simply the sum of the
flow capacities of the cut edges. An important theorem [4]
relates the cut value and the maximum flow, it states that the
edges saturated by the maximum flow through the graph will
form the minimum cut. Therefore, from now on we will fo-
cus on the transposition of the minimisation of equation (10)
into a minimum cut problem. This problem will be solved
later on with a maximum flow algorithm (see section 3.4).

In the following sections we will describe with more de-
tails the minimum cut problem adapted to our specific needs.

3.2 The graph

Consider the graphG = (V;E) depicted in figure 1. The
vertex setV is defined as

V = V 0 [ fs; tg

wheres is the source,t is the sink andV 0 is the set of all
possible assignments,

V 0 = f(i; u) : i 2 S; u 2 U [ fumax +�ugg

The set of edgesE is split into three different types. First,
the source is connected to all assignments with valueumin

and the sink to all assignments with valueumax +�u. The
second setEpenalty contains the penalty edges, they are de-
fined by the neighbourhood systemN that establishes the
connections between corresponding assignments (vertices)
with the same valueu. The third setEmotion contains the

motion edges. They correspond to single forward connec-
tion between a vertex with valueu, to another one with value
u +�u at the same pixel. The set of edges is thus defined
as

E = f(s; (i; umin)) : i 2 Sg

[ f((i; umax +�u); t) : i 2 Sg

[ Epenalty [ Elabel

with

Epenalty = f((i; u); (i0; u)) : i; i0 2 S; i0 2 Ni; u 2 Ug

Emotion = f((i; u); (i; u+�u)) : i 2 S; u 2 Ug

3.3 Edge capacity

One way to map the minimisation of the energy function
of equation (10) into a flow graph problem is to set the
edge capacities properly. First, we set the capacity of edges
directly connected to the source and the sink to infinity,
cap(s; (i; umin)) = cap((i; umax + �u); t) = 1. Now, it
remains to define the capacities of motion edges and penalty
edges.

3.3.1 Motion edges

The role of motion edges is to model the likelihood potential
of equations (10) and (4). We will set their capacities to
cap((i; u); (i; u+�u)) = V (Ii j fi = u). This way, cutting
a motion edge((i; u); (i; u + �u)) corresponds to assign
valueu to pixel i.

3.3.2 Penalty edges

The penalty edges incorporate the smoothness constraint we
have described by the prior potentialVi;i0 (fi; fi0) defined in
equation (9). In this way, if two neighbouring pixels are
assigned a different motion value (fi = u andfi0 = u0, u 6=
u0), the prior potential will be�(i; i0)jfi�fi0 j = �(i; i0)ju�
u0j. Therefore, we can define the capacity of a penalty edge
ascap((i; u); (i0; u)) = �(i; i0), wherei0 2 Ni.

3.4 Complexity of the maximum-flow algo-
rithm

As mentioned before, a minimum cut separating the sources
from the sinkt can be efficiently obtained by computing the
maximum flow of the graph. The minimum cut will be the
set of edges saturated by the maximum flow and will con-
tain the configuration that minimises the posterior energy in
equation (10).

To compute the maximum flow in the graph, we use the
preflow-push relabelalgorithm (see [4, 5]). A typical graph
to compute the MAP-MRF containsv vertices equal to the



number of pixels multiplied by the number of discretized
velocities. In our application,v = mM and the number
of edgese depends on the neighbourhood systemN , which
is fixed. Thus, the number of edges is proportional to the
number of vertices,e = O(v) = O(mM). The worst case
performance of the algorithm is then

O(ve log(v2=e)) = O(m2M2 log(mM))

Moreover, the average performance, estimated as
O(m1:3M1:3) (see [5]), is even better because of the
simple graph topology (a mesh) and locality of node
connections.

4 Experiments and results

In this section, we compare the performance of our
maximum-flow algorithm to compute the optical flow to the
modified Horn and Schunck’s method presented in section
2.1. Because we only need to find thex component of veloc-
ity (u), a suitable measure of performance is the normalised
square error between the computed value ofu and its real
value.

error =

P
i2S (ui � ureali )2P

i2S (u
real
i )2

� 100 (11)

For example, with this error measure, a motion field equals
to 2ureal or 0 gives a100% error.

First, we compare performances over simulated images
(see section 4.1) and then we show an application to the
computation of the blood flow in artery.

4.1 Validation over simulated deformation

To assess the usefulness of our method, we have generated
a shearing deformation (see figure 2b) and applied it to a
64� 64 image of Lenna (see figure 2a). In this experiment,
we have bounded the motion to beu 2 [�10; 10]with a pre-
cision of�u = 1=100 and the neighbourhood systemN is
fixed to the4-neighbors system. Because the motion is less
dependant along they-axis, we set�(i; i0) = 0, that is, when
i0 2 Ni andi0 is north or south of pixeli. For the other pixels
in Ni, 0 < �(i; i0) < 1. In figure 2c, we show the trivial
solutionu = �It=Ix, if Ix 6= 0. In figure 2d, we show
the best result obtained by the modified Horn and Schunck’s
algorithm (� = 50 and1000 iteration steps). Finally in fig-
ure 2e, we present the result obtained from the maximum-
flow calculation of the optical flow, with�(i; i0) = 1. The
global error in the calculation ofu is 69:61% for the trivial
solution,19:87% for the modified Horn and Schunck’s ap-
proach and our optimal maximum-flow method performed
well with only a9:90% error.

e

a b

c d

Figure 2: Shearing motion results on Lenna, a) orig-
inal 64� 64 image of Lenna, b) ground truth shear-
ing motion �eld, c) trivial solution: u = �It=Ix, d)
modi�ed Horn and Schunck's solution and e) results
of the maximum-ow approach.

a b

Figure 3: Con�guration of the graph G for a)
the straigth forward solution u = �It=Ix (i.e.:
�(i; i0) = 0) and b) the minimization of the posterior
energy funciton (N is the 4-neighbors system).
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Figure 4: Results on blood ow in artery, a) image
of the contrast material at time t = 0, b) image
of the advanced contrast material at time 1=100
sec., c) ground truth blood ow in the artery be-
tween the two images, d) results of the trivial solution
(u = �It=Ix), e) results of the modi�ed Horn and
Schunck's method and f) results of the maximum-
ow calculation of the optical ow.

4.2 Interpretation of the smoothness parame-
ter

Setting� = 0 in both prior potential of equation (5) and (9)
corresponds to assuming no smoothness and this is equiv-
alent to setu = �It=Ix for all i 2 S if Ix 6= 0. In our
maximum flow (see figure 3b), it is equivalent to remove the
set of penalty edgesEpenalty from the whole set of edges of
graphG and we obtain the graph of figure 3a.

Conversely, setting� = 1 in our maximum flow meth-
ods leads to the average motion field (flat solution).

4.3 Application to blood flow computation in
cineangiography of arteries

To test the algorithm in a more realistic situation, we used an
image formation model presented elsewhere [8] for angio-
graphic (X-ray) imaging of artery using the physical equa-
tions governing blood dynamics and contrast material dis-
persion (the contrast material which is opaque to X-ray is
necessary to ”see” the blood motion, otherwise blood would
be invisible). In figure 4a and b, two such images show the

blood (contrast material) advance in a vessel at two differ-
ent instants in time. The vessel diameter is 4 mm, the image
size is10mm� 4mm corresponding to82�41 pixels (pixels
are not squares) and the time sampling interval is 1/100 sec.
Using these images, it is easy to compare the optical-flow-
computed blood flow with the true flow used for the simula-
tions. The theoretical flow is actually parabolic and the max-
imum (image) velocity in the vessel is 2 cm/sec. First, we
show the result of the trivial solution (figure 4d), this is fol-
lowed by figure 4e, which present the motion field computed
with the modified Horn and Schunck’s algorithm and then
we present the maximum-flow calculation of the optical flow
(figure 4f). The errors are respectively11:25%, 8:32% and
1:97% showing again the superiority of the maximum-flow
approach. The maximum velocity computed with our algo-
rithm is1:69 pixel (2.06 cm/sec) which is about a3:05% er-
ror from the real maximum speed of1:64 pixel (2:00 cm/s).

5 Discussion and conclusion

In this paper, we have presented a new method for comput-
ing the optical flow from a sequence of images. This method
provides a scheme to compute exactly the global minimum
of the posterior energy of equation (10). Another major ad-
vantage is that the solution is direct (not iterative) and thus
we don’t have to set the number of iterations or define a
stopping criterion. However, in its current formulation, the
algorithm is limited to one-component optical flow.

Notice that the2D standard Horn and Schunck’s algo-
rithm would perform worse then the modified version of the
algorithm, because it is less constrained (v 6= 0 in our case
v = 0 which isa priori knowledge).
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