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Abstract based on a maximum-flow formulation.

This paper introduces a new efficient method for finding th .

optical flow for a special type of motion and smoothnesé Opt|Ca| flow

constrain. The optimisation is mapped into a maximum-flow ) ) i
problem in a graph, which is solved efficiently and lead4' 2-D sequence of two or more images is mathematically
to an optimal solution. Previously, similar methods werd€scribed as a functioh(i, ¢), where! is the image in-

used to solve stereo correspondence [11, 9] and maxienun{€"Sity at time¢ and at positioni = (z,y) € S and

posteriori estimation problem in Markov random fields [2,8 = 10,---,m — 1} is the set of all pixels. By the chain

3, 6, 10]. rule of derlvathn, we obtain a formulation for the total rate
After a general introduction to optical flow, we presenpf change of brightness

a modified version of Horn and Schunck’s method [7], dI _ 0Ide OIdy OI (1)

then we present how we map the optical flow optimisation dt ~ Oz dt Oydt Ot

problem into a flow graph. Experimental results on simu- .
lated data are then provided and compared to the modifi &ereal/_ax, a.[/ay an(_dal/(‘)t can be computed dpectly
rom a pair of imaged(¢,t) andI(i,t + At) and will be

Horn and Schunck’s method. They clearly show the po- . : :
tential of our formulation with normalised errors 90% abbreviated by, I, andI;. It remains to determine the

with our method vs.19.87% with the Hormn and Schunck’s °rightness changel/dt and thez andy components of

method. Both algorithms were also tested with realistic datvaeloc'ty’ denoted by‘. = do/dt andy — fiy/ dt respec-
ely. To solve equation (1), for the velocitiés, v) and the

in cineangiography of artery to assess blood flow. Again, OLE)W - .
method shows a better velocity profile assessmear¥ rightness changél /d¢, additional constraints must be ap-

vs. 8.32% of error). These results were expected becau@é'ed fo restrict the gllowabl_e motions. Such constraints are
constructed according to prior knowledge we have about the

the maximum-flow formulation is not iterative and leads to : :
. real motion and brightness change. Horn and Schunck [7]
a global optimum. . 2 .
suppose the intensity is conserved, so the brightness change
of a particular point in the image is equal #@/dt = 0.
Equation (1) is rewritten as
@ wt L+ 1, =0 (2)
There is an abundant literature about the computation of the 7 A
optical flow (see Barroret al. [1] for a summary of the Because this is a single equation with two unknowns, Horn
major methods). In this paper, we focus our attention 0gng Schunck [7, 1] added a smoothness constraint to solve

the optimisation involved in a special gradient-based methqge optical flow. We now proceed with our modified version
and show how to map the optimisation into a flow probleng their algorithm.

in a graph. Similar works have been done in the field of

stereo correspondence [3, 9, 11], image segmentation [10] . ,
and maximuma posteriori estimation in Markov random ]Q'l Modified Horn and Schunck’s method

fields [2, 3, 6]. Before getting to our method, we introducen our applications, we set= 0 because there is no motion

the basics of gradient-based optical flow calculation [1, 7hlong they-axes. Equation (2) is reformulated as
then we present a modified version of Horn and Schunck’s

algorithm [7] and finally, we proceed with our new method Iyjui + 1t =0 ®3)

1 Introduction
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Let f; = ((us,0))T designate the optical flow vector at pixel smoothness in the flow field (in our application to the calcu-
i. Thus,f = {f; | i € S} is the optical flow field to com- lation of the blood flow in artery, it is crucial to have global
pute. Equation (3) shows that we can find a unique solutismoothness). Second, we need to set the number of iteration
by settingu; = —1I,/I,, (if I,, # 0). But, when noise or some stopping criteria and we don’t have any guarantee
is taken into consideration, additional constraints must baf convergence.

imposed on the flow in order to find a solution that reflects In the next section, we present a new method to compute
some prior knowledge about the real flow field we are seekie global minimum of the posterior energy with a slightly
ing. Thus, we should instead minimise different prior potential.

V(I | fi) = (Tyui + I,)? (4) _
_ . , 3 Maximum-flow method

whereV(I; | fi) is the likelihood potential off; know-
ing the motionf;. An important constraint reflecting prior |n our new method, we use a graph formulation of the prob-
knowledge about the field is smoothness. The flow at nearlym of finding a suitable motion field. In this way, we
pixels in the image should be similar because the motidfave to bound and discretize the valuesan take. This is
of intensity points of an object presents some cohereng@rrect, because differential optical flow methods are only
and therefore the flow in a neighbourhood should changgilid to recover small motion. We defii¢ = {u : u =
smoothly. One way to ensure such coherence is to constraif);,, + hAu,h = 0,... ,M — 1 = (Umar — Umin)/Au}

the local change in velocity by minimising the squared mags the set of\/ finite values: can take.
nitude of thex-derivative of the velocity over the whole set  Because of some limitations of our algorithm, we cannot

of pixels S: use the same smoothness constraint as the one described in
us equation (5). Instead, we constrain the local change in ve-
V() =( 3 )2 (5) locity by minimising a weighted sum of the absolute value
t of thez andy components of the velocity gradient:
whereV (f;) is called the prior potential. The posterior po- 5 9
tential is obtained by combining equation (4) and equation V(fi) = C1I%| + Cz|%|
(5) into a weighted sum, z Y
whereC; and(Cs are positive constants. A discrete formu-
i | L) = V(i | fi i ) . o
VUil 1) = V(L | fi) + BV(£) ©) lation of this prior potential is then

The problem of finding the optical flow can be reformulated .
as the minimisation of the posterior energy, which is the in- Vi (fis fir) = B0, 7)lui — uir| ©)

tegration, over all pixels € S, of the posterior potential

described by equation (6) where (i, ') is a positive function defined on the neigh

bourhood system\ = {N; : i € S}, where\; is the set of
pixels in the neighbourhood of pixglsuch that ¢ N;.
E(f|I)= /V(fi | I;) dS (@) The problem of finding a suitable can be restated as
s the minimisation of the following posterior energy

A solution to this minimisation problem is obtained by vari- _ SN
ational calculus and an iterative form of the solution is [7] E(fID = g %\:/ B0 i —ua| -+
=k
k+l _ —k _ (@i Loy + 1) I, 8 ZV(Ii | fi) (10)
ui - ul ﬂ + I%Z ( ) ics

whereu! is the local average (excluding the current pixeB 1 Maximum-flow formulation of the energy

vgloc!ty u;) of the ve!ocity in a neighbou.rhooc.j centred at global optimisation
pixeli at thekth iteration. Because of the iterative aspect of
the algorithm, we have sef = —1I,,/I,.. This is correct, In this section, we will show how a particular flow problem
because it corresponds to the minimum of the likelihood pan a graph can be used to optimise globally the posterior en-
tential of equation (4) if we suppose no smoothness (i.e. wargy function of equation (10). Recall that the objective in
start with the most noisy flow field and we later smooth it).a maximum-flow problem is to maximise the flow between
There are many drawbacks in the solution provided biwo points, the source and the sink via various interme-

the iterative form in equation (8). First, there is no guarardiate junctions. A maximum-flow problem can be modelled
tee of reaching the global minimum of the posterior energhy a graph (see figure 1). The source, the sink and junc-
of equation (7). As a result, there will be a lack of globations are represented by vertices, while the edges represent
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Jt ,,,,,,,,,,,,,,,,, motion edges. They correspond to single forward connec-

" L B tion between a vertex with valuge to another one with value

s/ y =i i L, u + Au at the same pixel. The set of edges is thus defined
Source / P L 1 \/Sink as

\\O/ = E = {(s,(i,umin)) : 1 € S}

s ‘ > N et U {((7, wmaz + Au),t) : i € S}
\/CUt U Epenalty U Ejaper
Nt with

Figure 1: flow graph used to minimized the posterior Epenatty = {((i,u),(i",w) :i,i' € S,i' € Ny,u e U}

energy funciton of equation (10). The source s is
connecte to all assignments with velocity v = umin
and the sink t is connected to all assignments with
velocity © = Uqz + Au. The neighborhood system 3.3 Edge capacity
N used in this figure the 4-neighbors neighbohood
system.

Erotion = {((i,u),(i,u+ Au)):i€S,u €U}

One way to map the minimisation of the energy function
of equation (10) into a flow graph problem is to set the
edge capacities properly. First, we set the capacity of edges
the "pipes” through which "material” flows. The capacity ofdirectly connected to the source and the sink to infinity,
an edge represents the maximum amount of flow that can gop(s, (¢, umin)) = cap((i, umaz + Au),t) = co. Now, it
throughit. remains to define the capacities of motion edges and penalty
A cut through a flow graph is any set of edges that coredges.
tains at least one edge from every path from the source to the
sink (see figure 1). The cut value is simply the sum of thg 3.1 Motion edges
flow capacities of the cut edges. An important theorem [4]
relates the cut value and the maximum flow, it states that tHé€ role of motion edges is to model the likelihood potential
edges saturated by the maximum flow through the graph wiif equations (10) and (4). We will set their capacities to
form the minimum cut. Therefore, from now on we will fo- cap((i,w), (i,u+Au)) = V(I; | f; = u). Thisway, cutting
cus on the transposition of the minimisation of equation (16 motion edgg(é, ), (i,u + Au)) corresponds to assign
into @ minimum cut problem. This problem will be solvedvalueu to pixel;.
later on with a maximum flow algorithm (see section 3.4).
In the following sections we will describe with more de-3.3.2  Penalty edges

tails the minimum cut problem adapted to our specific needs. . )
The penalty edges incorporate the smoothness constraint we

have described by the prior potentigl; ( f;, fi) defined in

equation (9). In this way, if two neighbouring pixels are

3.2 Thegraph assigned a different motion valug (= v andf; = u', u #

Consider the grapt¥ = (V, E) depicted in figure 1. The '), the prior potential will bes (¢, i")| fi — fir| = B(i, ') u—

vertex set/ is defined as u'|. Therefore, we can define the capacity of a penalty edge
ascap((i,u), (i',u)) = B(i,i'), wherei' € N;.

V =V'U{s,t}
wheres is the sourcet is the sink and’’ is the set of all 3-4 Complexity of the maximum-flow algo-
possible assignments, rithm
V' ={(i,u):i € S,u € UU {tmar + Au}} As mentioned before, a minimum cut separating the source

from the sinkt can be efficiently obtained by computing the
The set of edge# is split into three different types. First, maximum flow of the graph. The minimum cut will be the
the source is connected to all assignments with valyg, set of edges saturated by the maximum flow and will con-
and the sink to all assignments with valug,, + Au. The tain the configuration that minimises the posterior energy in
second sef,...1t, contains the penalty edges, they are deequation (10).
fined by the neighbourhood systei that establishes the To compute the maximum flow in the graph, we use the
connections between corresponding assignments (verticgsgflow-push relabedlgorithm (see [4, 5]). A typical graph
with the same valua. The third sett,,,;on CONtains the to compute the MAP-MRF containsvertices equal to the
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number of pixels multiplied by the number of discretized
velocities. In our applicationy = mM and the number
of edges depends on the neighbourhood syst&hwhich

is fixed. Thus, the number of edges is proportional to th
number of verticess = O(v) = O(mM). The worst case
performance of the algorithm is then

RN

O(velog(v?/e)) = O(m?* M? log(mM))

Moreover, the average performance, estimated as a b
O(m'3M*3) (see [5]), is even better because of the
simple graph topology (a mesh) and locality of node
connections.

4 Experiments and results

In this section, we compare the performance of our
maximum-flow algorithm to compute the optical flow to the
modified Horn and Schunck’s method presented in sectio
2.1. Because we only need to find theomponent of veloc-
ity (u), a suitable measure of performance is the normalised
square error between the computed value: @ind its real
value.

B e (s = ul!)?
Zies (u;_“eal)2

For example, with this error measure, a motion field equals
to 2u"* or 0 gives al00% error.

x 100 (11)

Eerror =

First, we compare performances over simulated images e
(see section 4.1) and then we show an application to the
computation of the blood flow in artery. Figure 2: Shearing motion results on Lenna, a) orig-
inal 64 X 64 image of Lenna, b) ground truth shear-
L . . ing motion field, c) trivial solution: v = —1;/I,, d)
4.1 Validation over simulated deformation modified Horn and Schunck’s solution and e) results

To assess the usefulness of our method, we have generdtfghe maximum-flow approach.

a shearing deformation (see figure 2b) and applied it to a

64 x 64 image of Lenna (see figure 2a). In this experiment,

we have bounded the motion to bec [—10, 10] with a pre- "‘t::.-..:'-\ \
cision of Aw = 1/100 and the neighbourhood systekhis LY PSS
fixed to thed-neighbors system. Because the motion is less _ |, sesemr o
dependant along theaxis, we seB(i, ") = 0, thatis, when vett e

i’ € N; andi' is north or south of pixel. For the other pixels ~ ®° o5 »°
in AV;, 0 < B(i,i') < oo. Infigure 2c, we show the trivial o i
solutionu = —I;/I,, if I, # 0. In figure 2d, we show ./.-' S
the best result obtained by the modified Horn and Schunck’

algorithm (3 = 50 and1000 iteration steps). Finally in fig- a b

ure 2e, we present the result obtained from the maximum-

flow calculation of the optical flow, witlB(i,i") = 1. The = Figure 3: Configuration of the graph G for a)
global error in the calculation of is 69.61% for the trivial ~ the straigth forward solution u = —1I;/I, (i.e.
solution,19.87% for the modified Horn and Schunck’s ap-3(i,i’) = 0) and b) the minimization of the posterior
proach and our optimal maximum-flow method performednergy funciton (N is the 4-neighbors system).

well with only 2a9.90% error.
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Figure 4: Results on blood flow in artery, a) image
of the contrast material at time ¢ = 0, b) image
of the advanced contrast material at time 1/100
sec., c¢) ground truth blood flow in the artery be-
tween the two images, d) results of the trivial solution
(u = —1I:/1,), €) results of the modified Horn and
Schunck’s method and f) results of the maximum-
flow calculation of the optical flow.

4.2
ter

Settings = 0 in both prior potential of equation (5) and (9)
corresponds to assuming no smoothness and this is eq

alentto setw = —I;/I, foralli € Sif I, # 0. In our

maximum flow (see figure 3b), it is equivalent to remove the
set of penalty edges,.,q11, from the whole set of edges of

graphG and we obtain the graph of figure 3a.
Conversely, setting = oo in our maximum flow meth-
ods leads to the average motion field (flat solution).

4.3 Application to blood flow computation in
cineangiography of arteries

Interpretation of the smoothness parame-

blood (contrast material) advance in a vessel at two differ-
ent instants in time. The vessel diameter is 4 mm, the image
size is10mm x 4mm corresponding t82 x 41 pixels (pixels

are not squares) and the time sampling interval is 1/100 sec.
Using these images, it is easy to compare the optical-flow-
computed blood flow with the true flow used for the simula-
tions. The theoretical flow is actually parabolic and the max-
imum (image) velocity in the vessel is 2 cm/sec. First, we
show the result of the trivial solution (figure 4d), this is fol-
lowed by figure 4e, which present the motion field computed
with the modified Horn and Schunck’s algorithm and then
we present the maximum-flow calculation of the optical flow
(figure 4f). The errors are respectivdly.25%, 8.32% and
1.97% showing again the superiority of the maximum-flow
approach. The maximum velocity computed with our algo-
rithm is 1.69 pixel (2.06 cm/sec) which is abouBa05% er-

ror from the real maximum speed b4 pixel (2.00 cm/s).

5 Discussion and conclusion

In this paper, we have presented a new method for comput-
ing the optical flow from a sequence of images. This method
provides a scheme to compute exactly the global minimum
of the posterior energy of equation (10). Another major ad-
vantage is that the solution is direct (not iterative) and thus
we don't have to set the number of iterations or define a
stopping criterion. However, in its current formulation, the
algorithm is limited to one-component optical flow.

Notice that the2D standard Horn and Schunck’s algo-
rithm would perform worse then the modified version of the
algorithm, because it is less constrained4 0 in our case
v = 0 which isa priori knowledge).
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