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Abstract

This paper tackles the recurrent problem of disparity estima-
tion. The measurement of image disparity is a fundamental
precursor to binocular depth estimation. The mapping from
disparity to depth is well understood, while the automatic
disparity extraction is still subject to errors. We propose
to use the image derivatives with the phase-based approach
to overcome the tuning problem of the filter. Moreover, we
propose a quadratic model for the singularities neighbor-
hood detection and the phase quasi-linearity will be revis-
ited. The approach is characterized by the simplicity of its
implementation. It also provides dense and accurate dispar-
ity maps. A numerical error analysis against a ground-truth
shows that the results are very satisfactory.

1 Introduction

This work aims at the perception and the understanding of
three-dimensional scenes in computer vision. 3D informa-
tion is widely used in a large number of practical applica-
tions: robot navigation, aerial or satellite mapping, medi-
cal imaging, and part inspection to name a few. Stereo is
one of the 3D structure extraction techniques. Stereo allows
the computation of the depth using two images of the same
scene, taken with two cameras having different viewpoints.
The primary task of stereo is to locate pairs of pixels that are
images of the same point of the scene.

Many approaches have been proposed for disparity mea-
surement. These approaches differ from one another in the
matching primitives, the density of the results, the accuracy
of the estimates and the underlying computation time. The
most reported methods in the literature are feature-based,
correlation-based and energy minimization-based matching.
Recently, several works proposed phase-based techniques to
disparity estimation. One of the first applications to exploit
phase was the Kuglin-Hines method [1]. The method, which
is conceptually simple, uses only the Fourier phase and as-
sumes that the two images are related by pure translation.
Sanger [2] proposed a method using complex Gabor filter.

He extracts the phase from the complex response of Gabor
filter, and uses the Fourier shift theorem to compute the dis-
parity. Other earlier algorithms expressed the computational
task as a nonlinear differential equation that must be solved
at each image point [3]. The solving of a differential equa-
tion at a large number of image points and disparities makes
the algorithm unsuitable for real time computer applications.
Many other authors have used Gabor filter since the work of
Sanger [4, 5]. The work of Fleet [6] and Fleetet al. [7]
improved this approach. Fleet [7] employs a coarse-to-fine
strategy, first used in this application area by [8], in order to
allow the filter’s frequency to vary. However, the disparity
estimates are not accurate when phase at coarse scales is un-
available. Weng [9] used the windowed Fourier phase. He
proposes the use of a set of variable-size windows to com-
pute the disparity.

In this paper, we will motivate the choice of the band-
pass filter which will be used for disparity estimation. Fur-
thermore, a theoretical study showed that for some functions
the phase is either linear or quasi-linear [10]. This finding
allows us to assume without loss of generality that the phase
of the response is linear or locally linear. We propose to
use the images and their derivatives instead of a set of fil-
ters to overcome the tuning problem. Furthermore, the lin-
ear model used in the singularity neighborhood detection is
improved by the quadratic model which seems to better ap-
proximate the data. In section 2, we present the disparity as
Fourier phase difference and motivate the use of the Gabor
filter. The phase behavior, the singularities detection and the
algorithm are subject of section 3. In section 4, we show the
experimental results.

2 Disparity as phase difference

Let us suppose that the disparity�x is constant over the im-
age. Then, according to the Fourier shift theorem, a shift
in the spatial domain transforms to a modulation in the fre-
quency domain:

f(x��x) �������Fffg(!) e�j!�x (1)



wheref is the image andFffg is its Fourier transform.
The fundamental idea of the phase-based approach to

disparity measurement is to recover the disparity as phase
difference observed in the Fourier domain. Letl(x) and
r(x) be the left and right images of the pair. They are re-
lated to each other by the shiftl(x) = r(x ��x), and thus
in the frequency domain byL(!) = e�j!�xR(!), where
L(!) andR(!) denote the Fourier transforms of the image
pair. In terms of phase, we have the property

�l(!) = �r(!)� !�x (2)

where�l(!) � argL(!) and�r(!) � argR(!). Given
a frequency!0, we can then recover the disparity�x, us-
ing the difference of phases,�l(!0) and�r(!0), at that fre-
quency:

�x =
�r(!0)� �l(!0)

!0
=

��

!0
(3)

Unfortunately, the recovered disparity is global and can-
not be assigned to a particular region in the image. This is
due to the Fourier transform: the phase terms in the equa-
tion (3) are computed from all the points of the signal. In or-
der to have a local disparity estimate, it is necessary to define
a window inside which the points are picked up to compute
the phase terms. Unluckily, according to the scaling prop-
erty, the Fourier transform off(ax) is 1

jajFffg(!a ) where
Fffg(!) denotes the Fourier transform off(x). In other
words, if the analysis window is localized in the time do-
main, we will be unable to know precisely which frequency
is present in this window because there will not be only a
single frequency but a large frequency range. In this case,
the term!0 in the equation (3) has to be identified.

Time-frequency decomposition suggests a trade-off be-
tween the extreme (space and frequency) representations. It
will be possible to know the frequency content of a signal
around each image point with an uncertainty. If we want the
decomposition coefficients to have a direct space and fre-
quency information, we must define a localized transform
in the time and frequency domains simultaneously. The res-
olutions in both domains must be acceptable. Gabor [11]
proposed to use an exponential modulated Gaussian as a
decomposition function. As a matter of fact, the Gaus-
sian function is well localized in both space and frequency
domains. More precisely, it achieves the minimum uncer-
tainty. We measure the antagonism between the space and
frequency supports by the uncertainty principle. The proof
is beyond the scope of this paper but can be easily verified
[11, 10].

Gabor filters are, by far, the most commonly used tool
in joint space-frequency analysis. They are chosen for the
minimum space-frequency uncertainty product and for the
separability of center frequency and bandwidth [11, 12]. A

Gabor filter, tuned to a frequency!0, is created in the spa-
tial domain by modulating a Gaussian envelope function,
with standard deviation�, by a complex harmonic with fre-
quency!0. The design parameters of Gabor filters are the
standard deviation� of the Gaussian envelope and the cen-
ter frequency!0 of the complex harmonic. The definition in
the spatial domain is given by

g(x;�; !0) =
1p
2��

e�
x2

2�2 ej!0x (4)

and, therefore, in the frequency domain by

G(!;�f ; !0) = Ffgg(!;�; !0) = e
�

(!�!0)
2

2�f
2 (5)

where�f = 1=�. The real (even) and imaginary (odd) com-
ponents of the filter are shown in figure (1) as well as its
frequency spectrum.
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Figure 1:The complex Gabor filter. Left: real component. Mid-
dle: imaginary component. Right: its frequency spectrum.

3 Disparity measurement: from the
signal or from its derivatives?

Standard phase-based techniques use the original signal to
estimate the disparity. However, a single filter with a given
tuning is not sufficient to estimate the disparity adequately
because of the large frequency range of the image: the filter
will loose a lot of frequency information. Instead of con-
sidering a set of filters, we will use the signal derivatives to
deal with a large frequency range. In the following,l(x),
respectivelyr(x), will denote the left, respectively the right,
signal or its derivatives.

Let us assume that there is a constant disparity across
some parts of the image and that the phase of the Gabor re-
sponse is linear. The linearity assumption will be discussed
later. Then, in that regions we havel(x) = r(x � �x).
Because the filter is complex, so is the response to a given
image. For any pointx0 and particular Gabor filter with
center frequency!0, we can form the convolution products:

8<
:

CR(x0; !0) =
R
r(x)g(x0 � x;�; !0) dx

CL(x0; !0) =
R
l(x)g(x0 � x;�; !0) dx

=
R
r(x ��x)g(x0 � x;�; !0) dx

(6)



and the complex phase difference may be written as:

��(x0; !0) = arg[CL(x0; !0)]� arg[CR(x0; !0)]

= �l(x0; !0)� �r(x0; !0) (7)

Following the same reasoning as in the beginning of sec-
tion 2, we approximate�x(x0; !0) by ��(x0; !0)=!0 as
in equation (3). The local phases,arg[CL] andarg[CR], are
derived from the output of the Gabor bandpass filter. This lo-
cal phase approximation, and then the disparity estimation,
remains strictly valid only for filters of infinitesimal band-
width, as follows directly from the Fourier shift theorem.
As we are with non-infinitesimal bandwidth filters, the fre-
quency!0 in the denominator is no longer adapted to com-
pute the disparity. Then, we have to estimate this frequency
[6]. To show this, figure (2) illustrates an example with two
signals, each one shifted to each other. The spatial positions
of the maxima of the signals arex1 andx2. In the phase
representation, we see that the displacement�x = x1 � x2
is related to the phase difference and to the slopetan� of
the phase curve. Since the phases are assumed to be locally
linear, we havetan� = d�=dx, which is the local spatial
frequency. Therefore, the computation of the disparity esti-
mates is straightforward:

�x(x0; !0) =
��(x0; !0)�
d�

dx

�
(x0; !0)

(8)
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Figure 2: Disparity from phase differences and local spatial fre-
quency.

In practice, the phase signal is not too linear and for
those regions the disparity estimates are not reliable. We
must define the areas where the measurements should not
be trusted [2, 7]. In the following subsections, we will see
the global behavior of the Gabor output phase, the detection
of the singularities neighborhood as well as the algorithm
and its implementation requirements.

3.1 Phase quasi-linearity

Although the output phase depends on the nature of the in-
put, nevertheless we can expect a global behavior. For our
purposes, it is helpful that the phase exhibits a linear behav-
ior. An investigation shows that the output phase to an input

Gaussian function, which may represent a line in the image,
with standard deviation�1, has the form

�(x) =
!0�

2

�21 + �2
x (9)

and therefore is linear inx, � and!0 being the filter’s pa-
rameters. However, the output phase to a sine function, with
frequency2�=!, is given by

�(x) = arctan

�
� tanh(�2!!0)

tan(!x)

�
(10)

and seems to be not linear. But if we examine its derivative,
we find

�0(x) = !
tanh(�2!!0)

1� cos2(!x)
cosh2(�2!!0)

(11)

The function cos2 is bounded by 1. In con-
trast, the functioncosh2 has a fast growth. The term
cos2(!x)= cosh2(�2!!0) can therefore be neglected for
some combination of the parameters, see figure (3). Even
when the analytical expression is not linear, it is possible to
find a trade-off of the filter’s parameters so that the global
behavior is quasi-linear. From now on, we assume that the
output phase is generally quasi-linear.
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Figure 3:The phase is quasi-linear for�2
!0 � 4. Left: the phase.

Middle: its derivative. Right: the term cos2(!x)
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�
2
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3.2 Singularity neighborhood

To derive equation (8), we have assumed that the phase is
linear. In the regions where the phase is not linear, the dis-
parity will not be computed accurately. Furthermore, when
the phase nonlinearity occurs, the magnitude is generally
weak, see figure (4).

Fleetet al.[7] have proposed two criteria to remove such
areas. The first criterion (12) removes all the areas where the
instantaneous frequency deviates from the tuning frequency
when the second criterion (13) removes the neighborhood
adjacent to singular points,i.e. where the magnitude is very
weak:

j�x(x; !0)� !0j
�f

� �� (12)
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Figure 4: Relationship between low magnitude and nonlin-
ear phase.

�
j�x(x; !0)j
�(x; !0)

� �� (13)

where�(x; !0)=j�x(x; !0)j in equation (13) approximates
the distance from the singularity tox with a linear mag-
nitude model. However, near a singularity, the magnitude
behaves like a parabola. It follows that the criterion (13)
removes the double of the area size which is intended to
be removed in case where the data are best approximated
by a parabola. Indeed, considering a quadratic model, near
a singularity, the magnitude can be written as�(x; !0) =
�(x � xs)

2, wherexs is the singularity location. With this
model, the distance from the singularity tox is approxi-
mated by2�(x; !0)=�x(x; !0). The criterion (13) is re-
written as:

�
j�x(x; !0)j
2�(x; !0)

� �� (14)

The criterion (14) will remove exactly the number of pix-
els specified by�� if the data are best approximated by a
parabola. In singular locations,�(x; !0) and�x(x; !0) tend
toward zero and neither the criterion (13) nor (14) can be ap-
plied. We add a new constraint to remove the points where
the magnitude is sufficiently small. The remaining pixels
satisfy the constraint:

�(x; !0) � � (15)

3.3 Algorithm and implementation details

The algorithm consists in the following steps:

- convolve both images, and their derivatives, with the
Gabor filter tuned to a given frequency

for each derivative order (0::n) do

- compute the phase, the magnitude and the instan-
taneous frequency

- compute the disparity

- remove all the areas which do not satisfy the cri-
teria (15), (12) and (14)

- combine then disparity estimates, obtained for each
pixel: the final disparity is that which minimizes the
error

e = min
i2[0::n]

(��2N jlefti(�)� righti(� + di(�))j)

where i denotes the derivative order,N being the
neighborhood of the location to be checked.

There are a number of requirements to be considered when
designing phase-based disparity estimator filters:

� Only one half plane of the frequency domain:
We illustrate this point by two examples. Let us con-
sider that the signal is a Gaussian function with stan-
dard deviation�1. The phase of the Gabor response
to this signal is�(x) = �2!0

�2+�21
x. Since the phase is as-

sumed to be linear and either it is increasing or decreas-
ing, it is clear that!0 must be either positive or nega-
tive. In the case of a sine function with frequency!,

�(x) = arctan
�
� tanh(�2!!0)

tan(!x)

�
. Here again,!0 must

be either positive or negative. To conclude, we limit
ourselves to the right half-plane.

� No dc component:
Flat and constant surfaces in the image do not yield
3D information. These surfaces correspond to very low
frequencies. The filter must not respond to such fre-
quencies. We should have! � �f > 0, i.e. ! > �f .
Thus, with the bandwidth satisfying[!��f ; !+�f ] �
]0;1), the filter will not have dc sensitivity. The imag-
inary part of a Gabor filter does not have a dc compo-
nent because it is odd. However, the real part can have
a substantial dc. Generally, we remove the dc by sub-
tracting the mean value of the real part from itself.

� Spatial support:
As the spatial support grows, the support in the fre-
quency domain decreases and the bandwidth tends to
be infinitesimal as for the Fourier transform. In this
case, the filter can handle large disparities but the hy-
pothesis of constant disparity in the window may be
transgressed. Furthermore, the computational cost of
the convolution increases, and the extracted disparity
is global. With small spatial support, the bandwidth is
large and the computational cost decreases but the filter
can handle only small disparities.

4 Experimental results

We will show the performance of the algorithm on two test
images. The first test example is an edge shifted by a 5 pix-
els disparity, see figure (5.a). The filter’s parameters are
� = 12:5 and!0 = 0:24. The filter is tuned to relatively



high frequency. For this example, since the region that has
moved is small, the filter size must be small as well. Fig-
ure (5.b) shows the magnitude of the responses to the step
edges of figure (5.a). Figure (5.c) shows the phase of the
responses to the same step edges. From figure (5.c), the
phase curves can be assumed quasi-linear. The figure (5.d)
presents the disparity estimates. The disparity is not com-
puted everywhere because of flat surfaces. In these areas the
phases of the two signals are equal because the filter is con-
volved with the same homogeneous surfaces and the phase
difference is zero. The disparity is recovered in the region
that has moved. The most accurate disparity estimate cor-
responds to the maximum of both response magnitudes, left
and right, cf. figure (5.b) and (5.d). Elsewhere, the estimates
corrupt as the magnitudes decrease.
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Figure 5: Step edge shifted with 5 pixels disparity,� = 2 and
!0 = 0:24.

The next example is a scene that is made up of a chess-
board and some pawns, see figure (6). The background
of the scene has zero disparity, when the different pawns
and the chessboard have disparities inversely proportional
to their depth. The chessboard is an inclined plane with re-
spect to the depth. So the disparity estimates are expected
to be decreasing (from the bottom to the top of the image).
The nearer pawn must have large disparity values.

The figure (7 left) shows the results obtained on this
scene, using the images and their first and second deriva-
tives (n = 2). The filter is tuned to a wavelength of 16
pixels, corresponding to the center frequency!0 = 0:39
and the scale� = 7:63 pixels. The criterion (12) is ap-
plied with �� = 1:1 so that instantaneous frequencies are
accepted up to10% outside the nominal range of the filter.
The criterion (14) discards the pixels within� of a singu-
larity (�� = 1:0). Finally, � is set to0:04 in equation (15)
removing all the magnitudes below of4% of the maximal

Figure 6: Chessboard scene. Left and right images (courtesy of
J. Perrin).

Figure 7:Left: disparity estimates. Right: image reconstruction.

normalized magnitude. In figure (7 left), black stands for
the zero disparity. Note that the vertical black strips are due
to the width of the filter: disparities are computed only when
the filter is entirely inside the image. Dark areas are farther
while the lighter ones are closer. The disparity is recov-
ered successfully in the background (skyline). Figure (8)
shows the disparity estimates using the original signal (8.a),
its first derivative (8.b), its second derivative (8.c) and the
combination of the estimates (8.d). The constraints used to
suppress the wrong estimates are tight. This causes the re-
moval of large areas. We note that the removed areas do not
correspond. The combination of the estimates is intended to
increase both the density and the accuracy. Table 1 shows
the attainable densities and accuracies of the algorithm. It
is obvious that the combination increases the density of the
estimates. The error percentages are given with respect to
the density, and the density with respect to the whole image.
This means that the accuracy is also increased:67:40% of
49:71% have a null error using the signal when65:96% of
80:14% have a null error after the combination. The results
reflect the general shape of the scene. From the left image,
figure (6 left) and the computed disparity, figure (7 left), we
have reconstructed the right image (each pixel in the left im-
age was shifted with the corresponding disparity), figure (7
right). Black spots in figure (7 right) are due to the areas
removed by the constraints in equations (12), (14) and (15).



In the disparity map, these areas may be recovered by inter-
polation to approach100% of correct matches. Note that no
preprocessing nor post processing was carried out.
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Figure 8: Disparity at line 235. a) from the original signal. b)
from the1st derivative. c) from the2nd derivative. d) Combination
yielding the minimal quadratic error.

Type/Err. Density 0 pixel 1 pixel 2 pixels 3 pixels Q. Err.

Signal 49.71% 67.40% 82.25% 87.72% 90.71% 0.03

1st der 79.69% 62.28% 76.74% 83.01% 86.76% 0.23

2nd der 78.12% 62.02% 75.89% 81.65% 85.25% 0.17

combin. 80.14% 65.96% 78.31% 83.31% 86.29% 0.02

Table 1: Comparison of the densities and the accuracies of
the estimates.

5 Conclusion

Gabor phase is a useful tool providing a natural mechanism
for binocular disparity estimation. It avoids many of the
problems of correspondence algorithms. Its use is motivated
with the Fourier shift theorem. An advantage of phase in-
formation is its stability with respect to contrast differences
between the left and right views. In some regions, the phase
signal has an unwanted behavior. These regions have a low
magnitude, corresponding to a lack of signal. Disparity es-
timates should not be trusted in these regions. The criteria
gave good results and the combination increased both the
density and the accuracy of the estimates. The results ob-
tained are very satisfactory and help improve our theoretical
understanding.
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