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ABSTRACT

Scale-space representation is one formulation of the

multi-scale representation which has received

considerable interest in the literature, because of its

efficiency in several practical applications, and the

distinct properties of  the Gaussian kernel which

generates the Scale-space. However, in practice, we

note  some undesirable limitations when using the

Gaussian kernel: information loss caused by the

unavoidable Gaussian truncation and the prohibitive

processing time due to the mask size. To give a

solution to both problems, we propose in this paper a

new kernel family with compact support derived

from the Gaussian, which are able to recover the

information loss while reducing drastically the

processing time. This family preserves a great part of

the useful Gaussian properties, without contradicting

the uniqueness of the Gaussian kernel. The

construction and some properties of the proposed

kernels are developed in this paper. Furthermore, in

order to asses our contribution, an application of

extracting handwritten data from noisy document

images is presented, including a qualitative and

quantitative comparison between results obtained by

the Gaussian and the proposed kernels.

Key Words Multi-scale representation, scale-space
representation, compact support, kernels, functional
space, image segmentation, handwritten data,
handwritten data extraction.



1. INTRODUCTION

During the last few decades, mathematical tools
have been developed for handling the scale concept
in a coherent manner. Different multi-scale
representations have been proposed, such as quad-
trees in Klinger [11], pyramid representation in Burt
[4] and Crowley [8], and scale-space representation
in Witkin [17] and Koenderink [12]. The latter
formulation consists of using a convolution with a
chosen kernel in the smoothing operation. Several
authors, show that, under some posed hypothesis, the
choice of the Gaussian kernel is unique, and it has
many beneficial properties.

In his paper Cheriet [6] has shown how to
derive a new multi-scale paradigm which conjugate
data quality to noise immunity with low
computational cost. Indeed, although it is an intuitive
based approach, choosing mask size as scale
parameter leads to the desired objectives of efficient
segmentation method and it allows us to reduce
sensitively the maximum mask size from 30×30  to
17×17 in the case of the variation coefficient
VC>0.49 (see [6]). In this paper we propose to assess
these empirical results with a strong theoretical
foundations. Since taking mask size as scale
parameter reduces the processing time and improves
the image quality (minimize the information loss).
This intuition has pointed us in a new direction for
deriving a well founded new formalism able to make
a rigorous and explicit relation between the
“ classical”  scale parameter, namely the standard
deviation and the mask size of the kernel. To pursue
this line we propose a new family of kernels derived
from the Gaussian with compact supports  (KCS) (i.e.
the kernel itself  vanishes, outside some compact set).
Thus we don’t need to cutoff the kernel when
computing the convolution product which is the
principal cause of the information loss Furthermore,
the mask is precisely the support of the kernel, and its
relation (as we will show it in this paper) with the
standard deviation is simple and exact, concretely :
mask size = 2σ  (σ is the standard deviation). After
doing this, we can appreciate how much the mask
size (and then, the processing time) is reduced, (e.g.
from 11.31σ [2,15] or 6σ [6,13] to only 2σ), and the
information loss due to the truncation of the Gaussian
kernel is recovered. The diagram shown in Figure1,
summarizes the functional and the topological
transforms which allow the derivation of the new
kernel from the Gaussian one, and their impact on the
kernel mask sizes.

2. SCALE-SPACE GENERATION,
PRACTICAL LIMITATIONS OF

THE GAUSSIAN KERNEL  & OUR
CONTRIBUTION

Because we are concerned with a two dimension
signal (image) in the application given in section 5,
we recall the definition of scale-space in two
dimensions, although this definition is generalized to
any higher dimension without loss of the properties

mentioned above. Let ℜ→ℜ2:f  be a given

signal. The scale space representation

ℜ→ℜ×ℜ2:L  is defined such that :  at zero
scale it gives the original signal

L f(.; ) ,0 =                        ( 1 )

and at every scale σ,  the coarser signal
representation is given by the convolution

L g f(.; ) (.; ) .σ σ= ∗                 ( 2 )
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where g x y( , , )σ , is the 2-dimensional Gaussian

kernel :
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This presents a scale-space formulation using the
Gaussian kernel where the convolution product is
computed at each scale. The integral defining the

convolution must be computed over all space 2ℜ ,
however, it is approached practically by its

computation over a bounded set of 2ℜ ,  commonly
known as a mask. The accuracy of the computation
depends on the mask size. Wider masks give more
precise computation, but they increase the cost of
processing time;  lower mask sizes decrease the
processing time, but the accuracy is sometimes
severely diminished, which induces information loss.
Hence, two fundamental practical limitations of the
Gaussian kernel can be raised: information loss and
prohibitive processing time. Some solutions are
proposed in the literature to overcome these
problems, such as the approximation of the Gaussian
by recursive filters, or using truncated exponential
functions instead of the Gaussian [14]. All these
alternatives based on approximating the Gaussian,
reduce the processing time, but the information loss
still persists, and sometimes is increased. These two
problems constitute the main motivations of this
paper. In order to recover the information loss,
without increasing the mask size considerably, we
propose a kernel with a compact support. Thus, there



is no need to cutoff the kernel while the processing
time is controlled, since the mask is the support of the
kernel itself.

3. BUILDING NEW KERNELS WITH
COMPACT SUPPORT (KCS)

3.1 Recall of some Mathematical
Fundamentals

In order to make the KCS construction explicit, we
recall some definitions:

Definition 1: We call functional space
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Definition 2: We define the space of test functions
(smooth functions with compact support) as:
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Definition 3: let ρ  be a non-negative function in

)( 2ℜD satisfying the following conditions:
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Now, for each 0>σ , we define

),(1),( 2 σσρσσρ yxyx =  ( 7 )

Then, )( 2ℜ∈ Dσρ  is non-negative, and satisfies :
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These functions σρ  are called mollifiers.

Theorem 1 ( see [3] ):  )( 2ℜ∈ pLfLet for a

given thenpwithp ,1 ∞<≤ :

)( 2ℜ∈∗ pLfσρ                    ( 10 )

)( 2
0

ℜ →∗ →
pLinff σσρ  i.e.:

0|)(|lim
2

0 =−∗∫
ℜ

→ dxdyff p
σσ ρ           ( 11 )

We notice that if f is an image, and f
~

is its

extension by 0 for all 2ℜ , then )(
~ 2ℜ∈ pLf for

all ∞<≤ p1 . Thus the previous theorem holds for

each value of p, and we obtain the original image for
0=σ in the sense given by the theorem.

3.2 Kernel Construction

Let ),( yxgσ be a 2 -dimensional one-parameter

family of normalized symmetrical Gaussian. We
notice that this family can be obtained in the
following manner :
 Let ),( yxg  be the function
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In order to build the KCS kernel, we  apply a change

of variable to g instead of σg  and define the one-

parameter family of KCS kernels as above. First,
recall the polar coordinates which change the
variables ),( yx  into ),( θr ; when ),( yx  belongs

to 2IR , ),( θr  belongs to [ ]π2,0×ℜ+ . Let

),( θrΓ be the function which defines this change of

coordinates:

( )θθθ sin,cos),( rrr =Γ       ( 14 )



Now define the function ω as follows:

[0, 1[  → +ℜ

             r    → )(rω   with
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)),(( θω rΓ  transforms the unit ball )1,0(B  into a
2ℜ  plane. Now Make the change of

variables )),((),( θω ryx Γ= in the expression of

the Gaussian ),( yxg , and extend it by zero outside

the unit ball; we obtain then the desired KCS kernel :
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or, with the variables ),( yx  :
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This function, well known in mathematics, satisfies
(up to a normalizing constant):

∫
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Now, we can define the one-parameter family of
KCS kernels, as follows:
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According to definition 3, ( σρ ) is a family of

mollifiers, and theorem 1 holds. The support of σρ
is B(0,σ). Then it is unnecessary to take mask’s sizes

greater than σ2 .  Figure 2 depicts the curve of σρ
for a given σ.

4. DISCUSSION & APPLICATION

From the theoretical aspect, we have built in the
previous section the new kernel family KCS, and
given its formula. This kernel is derived from the
Gaussian and keeps the most important properties
(relative to the image segmentation process) of the
Gaussian kernel. Obviously, it cannot have all of the
properties which make the Gaussian unique.
However, even the Gaussian is very rich in properties
as seen above, we do not necessarily need all of them
to perform image segmentation properly. In this
sense, the most important ones are: i) continuity with
respect to scale parameter; ii) recovering the initial
signal (image) when the scale parameter tends to
zero;  iii) the strong regularization property; and iv)
the zero crossing diminishing property (i.e. a number
of zeros of a given signal decreases when it is
convoluted with a Gaussian kernel). Our new kernel
(KCS: kernel with compact support), conserves the
properties  i) to iii). A thorough and deep discussion
and proofs of theses properties can be found in [16].
For the iv)th property, tests on a great number of
perturbed functions show that this property is
conserved in general  (a sample is given in Figures 3
to 13), but we cannot say more. However, the
following theorem, proves a similar but weaker
property (The total-variation diminishing) :

Theorem 2 (total-variation diminishing property): Let
I be a given signal belonging to BV( ℜ 2 ), and ρσ,γ a
normalized KCS kernel. Suppose that the support of
I is bounded. Then, if we put  gσ = ρσ* I   than   ∀σ
>0, we have:

)g(2 σℜ
TV ≤ )I(2ℜ

TV
We say  that gσ  has a total-variation diminishing
property.  For the definition of the bounded variation
functions space BV( ℜ 2 ) and the total variation

()2ℜ
TV , please see [9-10].

This can be understood as follows: globally, the
distance between two successive extremas decreases,
which can be considered as a weak formulation of the
zero crossing diminishing or non-creation of artificial
local extremas property which is proper to the
Gaussian (see [1]). For  the proof of this theorem
please see [16].

For the practical aspect, in order to investigate
the KCS impact on extracting handwritten data from
degraded and noisy images, we have chosen postal
mail envelops as a target application. A comparison
is also established between results obtained by using
the Gaussian and KCS kernels. First, we recall briefly
the methodology being used in this application.
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To obtain multi-scale representations of a discrete
signal I, one can define a set of discrete functions Ii (

i ∈ [0 .. n]) as in [14], where I0 represents the

original image and each new level is calculated by
convolution from the previous one as follows :

i=1,…  iii KII ∗= −1         where iK is a given

kernel.
In the literature, the Gaussian kernel is used in edge
detection (Marr and Hildreth [15]). Other studies
related to edge detection include [2,7]. We have
presented in [5] a  generalization of using the LOG
operator for full shape data segmentation. This
methodology is briefly described in this section. For
instance, we describe the method by giving the KCS
Laplacian (LOKCS) and recalling the Laplacian of
Gaussian (LOG) operators; for more details
concerning the LOG operator please see [2,5]. The
operator is defined by convoluting the image with
LOKCS  (LOG).
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The decision criterion in segmenting data [5] is the
detection of the convex parts of the smoothed image
Ii, at each scale level of resolution (ith step); it is
determined by the sign of LOKCS*Ii-1 (LOG*Ii-1).
Since most of the information for the Gaussian is
contained within the range [6σ[6,13], 11.32σ[15,2] ],
where σ is the standard deviation of the Gaussian, the
mask size will be in this range in order to recover the
maximum information when using the Gaussian. For
the KCS we have shown that all the information is
contained in the interval ]-σ, σ [, then the mask size
is equal to 2σ only.

In order to compare their performance, we have fixed
appropriate parameters with respect to a few images
for both the LOKCS and the LOG operators. Then we
use these parameters to process a large image data
base. We focus the discussion on two sets of images:
1) In the first set (a) ( see figure14-a), both operators
give good results with high visual quality. However
the required processing time for the LOKCS operator
is drastically less than that required by the LOG
operator. Indeed, the processing time depends on the
mask size, which is equal to 2σ for the LOKCS.  For
the LOG, we have chosen the mask size as suggested
in [15,2], i.e., mask size = 11.32σ. In our tests, for the
multi-scale representation we have decreased the σ
value from 4 to 2 with a step of 0.5 for the LOKCS
and from 3 to 1 with the same step 0.5 for the LOG.
In terms of Mask dimension, from 8×8 to 4×4 for the
LOKCS and from 33.96×33.96 to 11.32×11.32 for
the LOG. We can appreciate the reduction of the
mask dimension and hence the overall processing
time.
2) The second set (b) (see figure 14-b) represents
some degraded images. With the same parameters
used in ( a ), one can see that the information loss
when using the Gaussian kernel becomes too
sensitive, and we can appreciate the capability of the
KCS kernel to recover it, without forgetting the
processing time gained.

4. CONCLUSION

In this paper, we have presented a new family of
kernels (KCS) to generate scale-space in Multi-scale
representation where the Gaussian kernel is usually
used. The new kernels are derived from the Gaussian,
by deforming the plane (ℜn space in the general case)
into a unit ball. Hence, we obtain kernels with
compact support. The obtained kernels preserve the
most important properties of the Gaussian kernel to
perform image segmentation efficiently. Thanks to
their compact support property, the proposed kernels
give an effective response to  both practical limitation
problems when using the Gaussian kernel, namely,
the information loss caused by the truncation of the
Gaussian kernel and the prohibitive processing time
due to the wide mask size. We have presented an
application to extracting handwritten data, and have
made a qualitative and quantitative comparisons of
the results obtained by both the Gaussian and the
KCS kernels, which confirm the KCS theoretical
virtues we have shown. More experimental results are
being undertaken on a large and real data base in
order to give the new kernel family a thorough and a
complete discussion with respect to the analytical and
practical issues.



Figure 1 : Derivation of the KCS kernel from the Gaussian kernel: the topological transform that transforms the
Gaussian kernel to a compact support kernel.
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Figure14-a: segmented images of  set ( a ) shows that both operators LOKCS and LOG give good results. However the
maximum mask size is reduced from 33.96×33.96 for the
LOG  to 8×8 for the LOKCS.

Figure 7:
Regularization
with σ=3

Figure 8:
Regularization
with σ=4

Figure 9:
Regularization
with σ=5

Figure 10:
Regularization
with σ=6

Figure 11:
Regularizatio
n with σ=7

Figure 12:
Regularization
with σ=8

Figure 13:
Regularization
with σ=9

Segmentation using the KCS kernel.
Maxdimask=8×8

Segmentation using the Gaussian
kernel. Maxdimask=33.96×33.96

Original images of set (a)



Figure 14-b- set ( b ) represent some degraded images. With the same parameter used in (a ) , one can see the sensitive loss of
information when using the LOG, and the capability of LOKCS to recover it, when the processing time is drastically reduced as
in ( a ) .
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