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Abstract

Discriminating edge types, based on their local surface
re
ectance properties, is useful for a number of appli-
cations such as object recognition, stereo vision and
structure from motion, where similar edge types (e.g.
material transitions) from two distinct images are used
for image matching while discounting other "acciden-
tal" edge types (e.g. shadows and highlight transitions).

Because intensity-based edge detectors cannot distin-
guish between various transition types (that is whether
the transition is due to material changes, shadows,
abrupt surface orientation changes or highlights), in
this paper, we aim at using color information to classify
the physical nature of the edge.

Therefore, the e�ect of varying imaging circum-
stances is analyzed. From this analysis we present the
color models c1c2c3 and l1l2l3. It is shown that l1l2l3
varies with a change in material only, c1c2c3 with a
change in material and highlights, and RGB vary with
a change in material, highlights and geometry of an ob-
ject. From these color models we derive gradient infor-
mation which is used to classify edges in a color image
to be one of the following types: (1) a shadow or geom-
etry edge, (2) a highlight edge, (3) a material edge.

Experiments conducted with the edge classi�cation
technique on di�erent color images show that the pro-
posed method successfully discriminates the three di�er-
ent edge types.
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1 Introduction

Discriminating edge types, based on their local surface
re
ectance properties, is useful for a number of applica-
tions such as object recognition, stereo vision and struc-
ture from motion, where similar edge types (e.g. mate-
rial transitions) from two distinct images are used for
image matching while discounting other "accidental"
edge types (e.g. shadows and highlight transitions).

The color (or rather, the apparent color) of an object
varies with changes in illuminant color, illumination ge-
ometry (i.e. angle of incidence), viewing geometry (an-
gle of re
ectance), and miscellaneous sensor parame-
ters. Consequently, the apparent color of an object can
be di�erent due to the varying imaging conditions.

Because intensity-based edge detectors cannot dis-
tinguish between di�erent transition types, we use color
information to classify the physical nature of a color
edge. To this end, the e�ect of the varying imaging
circumstances is analyzed. From this analysis, we de-
rive color invariant gradient information which is used
to classify edges in a color image to be one of the fol-
lowing types: (1) a shadow or geometry edge, (2) a
highlight edge, (3) a material edge.

Di�erent color edge detection schemes have been
proposed. One of the �rst methods based on physics
considerations is Klinker et al. [6] and Bajscy et al.
[1]. Both methods retrieve "dog-leg" planar clusters in
RGB-space yielding segmentation independent of the
object's geometry, illumination conditions and high-
lights. Healey[5] proposes a method to segment images
on the basis of normalized color. Recently, various color
features have been studied using a multi-resolution seg-
mentation method [7]. Although the above segmenta-
tion techniques are based on physics considerations to
obtain segmentation results independent of the varying
imaging conditions, they do not classify di�erent color
transitions in di�erent transition types such as material
changes, shadows, abrupt surface orientation changes
or highlights. Therefore, in this paper, we propose a
taxonomy for color invariance. The taxonomy is based
upon the sensitivity of the di�erent color models with
respect to the following imaging conditions: object ge-
ometry, shadows, highlights, and material. From the
taxonomy the edge classi�er is derived.

The paper is organized as follows. In Section 2,
color and re
ection is discussed. In Section 3, di�er-
ent color models are presented. Then, in Section 4,
we discuss the sensitivity of the di�erent color models
with respect to the imaging conditions. In Section 5,
computational methods are proposed to compute color



invariant gradients. Next, in Section 6, the classi�ca-
tion scheme is proposed to classify edges based on their
local re
ectance properties. Experiments carried out on
a two color images are discussed in Section 4. Finally,
several conclusions will be drawn.

2 Color and Re
ection

Let E(~x; �) be the spectral power distribution of the
incident (ambient) light at the object surface at ~x, and
let L(~x; �) be the spectral re
ectance function of the
object at ~x. The spectral sensitivity of the kth sensor
is given by Fk(�). Then �k, the sensor response of the
kth channel, is given by:

�k(~x) =

Z
�

E(~x; �)L(~x; �)Fk(�)d� (1)

where � denotes the wavelength, and L(~x; �) is a com-
plex function based on the geometric and spectral prop-
erties of the object surface. The integral is taken from
the visible spectrum (e.g. 380-700 nm). Further, con-
sider a opaque inhomogeneous dielectric object, then
the geometric and surface re
ection component in func-
tion L(~x; �) can be decomposed in a body and surface
re
ection component as described by Shafer [8]:

�k(~x) = GB(~x; ~n;~s)

Z
�

E(~x; �)B(~x; �)Fk(�)d�+

GS(~x; ~n;~s; ~v)

Z
�

E(~x; �)S(~x; �)Fk(�)d� (2)

giving the kth sensor response. For a color camera we
have k = fR;G;Bg. Further, B(~x; �) and S(~x; �) are
the surface albedo and Fresnel re
ectance at ~x respec-
tively. ~n is the surface patch normal, ~s is the direction
of the illumination source, and ~v is the direction of the
viewer. Geometric terms GB and GS denote the geo-
metric dependencies on the body and surface re
ection
component respectively.

Considering the neutral interface re
ection (NIR)
model (assuming that S(~x; �) has a constant value in-
dependent of the wavelength) and white illumination
(approximately equal energy density for all wavelengths
within the visible spectrum), then S(~x; �) = S(~x), and
E(~x; �) = E(~x) and hence being constants (over the
wavelengths). Then, we put forward that the measured
sensor values are given by:

!k(~x) = GB(~x; ~n;~s)E(~x)

Z
�

B(~x; �)Fk(�)d�+

GS(~x; ~n;~s; ~v)E(~x)S(~x)

Z
�

Fk(�)d� (3)

giving the kth sensor response of an in�nitesimal sur-
face patch under the assumption of a white light source.

If the integrated white condition holds (i.e. the area
under the sensor spectral functions is approximately the
same):

Z
�

Fi(�)d� =

Z
�

Fj(�)d� (4)

we propose that the re
ection from inhomogeneous di-
electric materials under white illumination is given by:

!k(~x) = GB(~x; ~n;~s)E(~x)

Z
�

B(~x; �)Fk(�)d�+

GS(~x; ~n;~s; ~v)E(~x)S(~x)F (5)

If !(~x) is not dependent on ~x, we obtain:

!k = GB(~n;~s)E

Z
�

B(�)Fk(�)d�+

GS(~n;~s; ~v)ESF (6)

This re
ection model is used to study and analyze
the subspace on which colors will be projected coming
from the same uniformly colored surface.

3 Color Invariants

In this section, we discuss the di�erent color models in
Section 3.1 and their sensitivity with respect to the
imaging conditions in Section 3.2. Finally, a taxonomy
for color invariance is given which is used to classify
edges on the basis of physics considerations.

3.1 Color models

In Gevers et al [3], [4] we have proposed di�erent color
models which some degree of invariance for the pur-
pose of object recognition. The goal was to get more
insight which color models to use under which imaging
parameters. This is useful for object recognition ap-
plications where no constraints on the imaging process
can be imposed as well as for applications where one
or more parameters of the imaging process can be con-
trolled such as for robots and industrial inspection (e.g.
controlled object positioning and lightning conditions).
For such a case, color models can be used for object
recognition which are less invariant (at least under the
given imaging conditions), but having higher discrimi-
native power. In this paper, we use the di�erent color
models for the purpose of color edge classi�cation. To
that end, we focus on c1c2c3 de�ned by [3], [4]:

c1 = arctan(
R

maxfG;Bg
) (7)



c2 = arctan(
G

maxfR;Bg
) (8)

c3 = arctan(
B

maxfR;Gg
) (9)

and l1l2l3 de�ned by [3], [4]:

l1 =
jR�Gj

jR�Gj+ jR�Bj+ jG�Bj
(10)

l2 =
jR�Bj

jR�Gj+ jR�Bj+ jG�Bj
(11)

l3 =
jG�Bj

jR�Gj+ jR�Bj+ jG�Bj
(12)

In the next section, we discuss the sensitivity of
c1c2c3 and l1l2l3 color models with respect to the imag-
ing parameters.

3.2 Matte objects

Consider the body re
ection term of Eq. ( 5):

�k(~x) = GB(~x; ~n;~s)E(~x)

Z
�

B(~x; �)Fk(�)d� (13)

giving the kth sensor response of an in�nitesimal matte
surface patch under the assumption of a white light
source. Again, for a color camera, we have k =
fR;G;Bg.

According to the body re
ection term, the color de-
pends on

R
�
B(~x; �)Fk(�)d� (i.e surface albedo and sen-

sors) and the brightness on illumination intensity E(~x)
and object geometry GB(~x; ~n;~s). A uniformly colored
surface which is curved (i.e. varying surface orienta-
tion) gives rise to a broad variance of sensor values.
Hence, RGB values obtained by a color camera will be
negatively a�ected (color values will shift in RGB-color
space) by the image-forming process. In contrast, we
can prove that the c1c2c3 color model, denoting the an-
gles of the body re
ection vector, is a color invariant
for matte, dull objects cf. Eq. ( 13) and Eqs. ( 7) -
( 9):

c1(�R; �G; �B) =

arctan(
GB(~n;~s)EKR(�)

maxfGB(~n;~s)EKG(�); GB(~n;~s)EKB(�)g
) =

arctan(
KR(�)

maxfKG(�);KB(�)g
) (14)

where

KC(�) =

Z
�

B(�)FC(�)d� for C 2 fR;G;Bg (15)

is the compact formulation depending on the sensors
and surface albedo only. Equal arguments hold for c1
and c2. Note that the dependency on illumination, ob-
ject pose, camera position, and object shape is factored
out i.e. c1c2c3 is only dependent on the sensors and the
surface albedo.

Further, l1l2l3 is a color invariant for matte objects
as follows from substituting Eq. ( 13) in Eqs. ( 10) -
( 12):

l1(�R; �G; �B) =

GB(~n;~s)E(jKR(�)�KG(�)j)

GB(~n;~s)E(jKR(�) �KG(�)j+ jKR(�)�KB(�)j+ jKG(�)�KB(�)j)
=

jKR(�)�KG(�)j

jKR(�)�KG(�)j+ jKR(�)�KB(�)j+ jKG(�)�KB(�)j

only dependent on the sensors and the surface albedo.

3.3 Shiny objects

Consider the surface re
ection term of Eq. ( 5):


k(~x) = GS(~x; ~n;~s; ~v)E(~x)S(~x)F (16)

giving the kth sensor response for an in�nitesimal shiny
surface patch under white illumination.

Note that under the given conditions (NIR-model),
the color of highlights is not related to the color of the
surface on which they appear, but only on the color of
the light source. Thus for the white light source, the
measured values of a shiny surface can be represented
by the surface re
ection vector on the grey axis (i.e.
main diagonal) of the sensor space. The extent of the
highlight color cluster depends on the glossiness of the
object surface.

For a given point on a shiny surface, the contribution
of the body re
ection component � and surface re
ec-
tion component 
 are added cf. Eq. ( 5). Consequently,
l1l2l3 is also independent of highlights as follows from
substituting Eq. ( 5) in Eqs. ( 10) - ( 12):

l1(!R; !G; !B) =

j�R � �Gj

j�R � �Gj+ j�R � �B j+ j�G � �B j

GB(~n;~s)E(jKR(�)�KG(�)j)

GB(~n;~s)E(jKR(�) �KG(�)j+ jKR(�)�KB(�)j+ jKG(�)�KB(�)j)
=

jKR(�)�KG(�)j

jKR(�)�KG(�)j+ jKR(�)�KB(�)j+ jKG(�)�KB(�)j

only dependent on the sensors and the surface albedo,
where

Kk(�) =

Z
�

B(�)Fk(�)d� (17)

is the compact formulation for the kth the channel.



3.4 Color invariant taxonomy

In the last section, the e�ect of varying imaging cir-
cumstances is analyzed. To achieve this, the dichro-
matic re
ection model under white illumination has
been studied. From this analysis it has been shown that
l1l2l3 varies with a change in material only, c1c2c3 with
a change in material and highlights, and RGB varies
with a change in material, highlights and geometry of
an object. The color invariance taxonomy is shown in
Fig. 1. The taxonomy is based upon the sensitivity of
the color models with respect to the following imaging
conditions: object geometry, shadows, highlights, and
material.

c1c2c3
l1l2l3

RGB
materialhighlightsshadows

+ + + +
+ +

+
- -
- - -

object shape

Figure 1: Taxonomy of color invariance based upon
the sensitivity of the di�erent color models with re-
spect to the following imaging conditions: l1l2l3
varies with a change in material only, c1c2c3 with a
change in material and highlights, and RGB varies
with a change in material, highlights and geometry
of an object. - denotes invariant and + denotes sen-
sitivity of the color model to the

In the remainder of the paper, the taxonomy will be
used to classify edges in a color image to be one of the
following types: (1) a shadow or geometry edge, (2) a
highlight edge, (3) a material edge.

4 Color Invariant Gradients

In the previous section, color models are discussed
which are invariant under varying imaging conditions.
In this section, we present color invariant edges derived
from the di�erent color models.

4.1 Gradients in multi-valued images

In contrast to gradient methods which combine individ-
ual components of a multi-valued image in an ad hoc
manner without any theoretical basis (e.g. taking the
sum or RMS of the component gradient magnitudes as
the magnitude of the resultant gradient), we follow the
principled way to compute gradients in vector images
as described by Silvano di Zenzo [9] and further used in
[10], which is summarized as follows.

Let �(x1; x2) : <
2 ! <m be a m-band image with

components �i(x1; x2) : <2 ! < for i = 1; 2; :::;m.

For color images we have m = 3. Hence, at a given
image location the image value is a vector in <m. The
di�erence at two nearby points P = (x01; x

0
2) and Q =

(x11; x
1
2) is given by4� = �(P )��(Q). Considering an

in�nitesmall displacement, the di�erence becomes the
di�erential d� =

P2
i=1

@�
@xi

dxi and its squared norm is
given by:

d�2 =

2X
i=1

2X
k=1

@�

@xi

@�

@xk
dxidxk =

2X
i=1

2X
k=1

gikdxidxk =

�
dx1
dx2

�T �
g11 g12
g21 g22

��
dx1
dx2

�
(18)

where gik :=
@�
@xi

� @�
@xk

and the extrema of the quadratic
form are obtained in the direction of the eigenvectors
of the matrix [gik] and the values at these locations
correspond with the eigenvalues given by:

�� =
g11 + g22 �

p
(g11 � g22)2 + 4g212
2

(19)

with corresponding eigenvectors
given by (cos ��; sin ��), where �+ = 1

2 arctan
2g12

g11�g22
and �� = �+ + �

2 . Hence, the direction of the mini-
mal and maximal changes at a given image location is
expressed by the eigenvectors �� and �+ respectively,
and the corresponding magnitude is given by the eigen-
values �� and �+ respectively. Note that �� may be
di�erent than zero and that the strength of an multi-
valued edge should be expressed by how �+ compares
to ��, for example by subtraction �+��� as proposed
by [10], which will be used to de�ne gradients in multi-
valued color invariant images in the next section.

4.2 Gradients in multi-valued color in-

variant images

In this section, we propose color invariant gradients
based on the multi-band approach as described in the
previous section.

The color gradient for RGB is as follows:

rCRGB =
q
�RGB+ � �RGB� (20)

for

�� =
gRGB11 + gRGB22 �

p
(gRGB11 � gRGB22 )2 + 4(gRGB12 )2

2
(21)

where gRGB11 = j@R
@x
j2 + j@G

@x
j2 + j@B

@x
j2, gRGB22 = j@R

@y
j2 +

j@G
@y
j2 + j@B

@y
j2, gRGB12 = @R

@x
@R
@y

+ @G
@x

@G
@y

+ @B
@x

@B
@y

.
Further, we propose that the color invariant gradient

(based on c1c2c3) for matte objects is given by:



rCc1c2c3 =
q
�c1c2c3+ � �c1c2c3� (22)

for

�� =
gc1c2c311 + gc1c2c322 �

p
(gc1c2c311 � gc1c2c322 )2 + 4(gc1c2c312 )2

2
(23)

where gc1c2c311 = j@c1
@x
j2+j@c2

@x
j2+j@c3

@x
j2, gc1c2c322 = j@c1

@y
j2+

j@c2
@y
j2 + j@c3

@y
j2, gc1c2c312 = @c1

@x
@c1
@y

+ @c2
@x

@c2
@y

+ @c3
@x

@c3
@y

.
Similarly, we propose that the color invariant gradi-

ent (based on l1l2l3) for shiny objects is given by:

rCl1l2l3 =

q
�l1l2l3+ � �l1l2l3� (24)

for

�� =
gl1l2l311 + gl1l2l322 �

q
(gl1l2l311 � gl1l2l322 )2 + 4(gl1l2l312 )2

2
(25)

where gl1l2l311 = j@l1
@x
j2 + j@l2

@x
j2 + j@l3

@x
j2, gl1l2l322 = j@l1

@y
j2 +

j@l2
@y
j2 + j@l3

@y
j2, gl1l2l312 = @l1

@x
@l1
@y

+ @l2
@x

@l2
@y

+ @l3
@x

@l3
@y

.
In the next section, the color invariant gradients will

be used to discriminate the di�erent edge types by their
physical nature.

5 Re
ectance Based Edge Clas-

si�cation

In the previous section, the e�ect of varying imaging
circumstances have been analyzed �rst for dichromatic
re
ectance under white illumination di�erentiated for
RGB, c1c2c3 and l1l2l3. From the color invariance tax-
onomy and the computational techniques for gradient
calculation, we may conclude thatrCRGB measures the
presence of (1) shadow or geometry edges, (2) highlight
edges, (3) material edges. Further, rCl1l2l3 measures
the presence of (2) highlight edges, (3) material edges.
And rCl1l2l3 measures the presence of only (3) mate-
rial edges. Similar to the color invariance taxonomy, a
taxonomy of color edges can be given, see Fig. 2. The
color edge taxonomy is based upon the sensitivity of
the color gradients with respect to the following imag-
ing conditions: object geometry, shadows, highlights,
and material.

Based on the given color edge taxonomy, we now
present a color edge classi�er discriminating edges in
one of the following types: (1) a shadow or geometry
edge, (2) a highlight edge, (3) a material edge.

Let the set of image coordinates of local RGB edge
maxima in image be denoted by E which will be zero

l1l2l3

RGB
c1c2c3

C▼

C▼

C▼

shape edges shadow edges highlight edges material edges

+

-
- -

-

+ +
+
-

+
+
+

Figure 2: Taxonomy of color edges based upon the
sensitivity of the di�erent color models with respect to
the following imaging conditions. - denotes invariant
and + denotes sensitivity of the color model to the

except at RGB edges. To �nd RGB edges in images we
use the Canny-edge detector with non-maximum sup-
pression applied on rCRGB . Then the rule-based re-

ectance classi�er is as follows:

IF (rCRGB) > t1 AND (rCc1c2c3) � t2
THEN classify as shadow or geometry edge

ELSE
IF (rCc1c2c3) > t2 AND (rCl1l2l3) � t3
THEN classify as highlight edge
ELSE
IF (rCl1l2l3) > t3
THEN classify as material edge

only computed for ~x 2 E that is only at a RGB edge
maximum. Further, ti are thresholds based on the noise
level to suppress marginally visible edges.

6 Experiments

6.1 The �rst recording

.
Figure 4.a is an image of several toys against a

background consisting of four squares. The size of the
image is 256x256. The �rst upper left quadrant consists
of three homogeneously painted matte cubes of wood.
The second upper right quadrant contains two specu-
lar plastic donuts on top of each other. In the bottom
left quadrant a red highlighted ball and a matte cube
are shown while the last quadrant contains two matte
cubes. The image is clearly contaminated by shad-
ows, shading, highlights and inter-re
ections. Inter-
re
ections occur when an object receives the re
ected
light from other objects. Note that each individual ob-
ject is painted homogeneously with a distinct color.

In Figure 3.a edges are shown obtained from
the RGB image. Clearly, edges are introduced by
abrupt surface orientations, shadows, inter-re
ections
and highlights. In contrast, computed edges for c1c2c3
and l1l2l3 de�ned by rCc1c2c3 and rCl1l2l3 respectively,
shown in Figure 3.b and 3.c, are insensitive for shad-



Figure 3: Edge maps of the various color models
computed from the �rst recorded color image shown
in Figure 4.a. a. Edge map based on RGB gra-
dient �eld rCRGB with non-maximum suppression.
b. Edge map based on c1c2c3 gradient �eld rCc1c2c3
with non-maximum suppression. c. Edge map based
on l1l2l3 gradient �eld rCl1l2l3 with non-maximum
suppression.

ows and surface orientation changes. In Figure 3.c the
edge map is shown for l1l2l3 with non-maximum sup-
pression. Good performance is shown where computed
edges correspond to material boundaries discounting
the disturbing in
uences of surface orientation, illumi-
nation, shadows and highlights. Only inter-re
ections
disturb the quality of the edge map slightly (note that
l1l2l3 is not robust to inter-re
ections).

The results of the proposed re
ectance based edge
classi�er are shown in Figure 4.b for the color image
shown in Figure 4.a. The edge classi�er discriminates
edges in the color image to be one of the following types:
(1) a shadow or geometry edge shown in Figure 4.c,
(2) a highlight edge shown in Figure 4.d, (3) a ma-
terial edge shown in Figure 4.e. From the observed
results, the edge classi�er discriminates the three edge
types successfully. Only minor performance is achieved
when intensity and highlights change smoothly over a
wide image range due to the local behavior of the edge
classi�er.

6.2 The second recording

.

In Figure 6.a, the second recorded full-color image
is shown containing various rigid objects against a uni-
form background. The size of the image is 256x256.
In the �rst quadrant, two cubes of painted wood are
shown. The second quadrant contains a plastic cup
and in the third quadrant a highlighted plastic donut
is shown. The right-bottom quadrant consists of two
cubes. Again, the image is a�ected by shadows, shad-
ing, highlights and inter-re
ections. Each object is
painted uniformly with a distinct color.

Accidental edges computed from RGB, depicted in

Figure 4: a. First recorded color image. b. Re-

ectance based edge classi�cation. c. shadow and
geometry edges d. highlight edges e. material transi-
tion.

Figure 5.a, are introduced due to shadows (e.g. casted
by the cubes upon the background), abrupt surface ori-
entation (e.g. the cup), inter-re
ections (e.g. donut
and background) and highlights (e.g. the highlighted
donut). These edges do not correspond to material
transitions. c1c2c3 yields an edge map which is fairly
independent of shadows and abrupt surface orientation
changes but erroneous edges are generated by image
noise and small specularities due to local variations in
material composition of objects and highlights. In con-
trast, good performance is shown for l1l2l3 as depicted
in 5.c except for the disturbing e�ects of image noise
and variations in material composition.

Results of the edge classi�er are shown in Figure
6.b for the color image shown in Figure 6.a. The edge
classi�er successfully discriminates edges in the color
image to be one of the following types: (1) a shadow



Figure 5: Edge maps of the various color models
computed from the �rst recorded color image shown
in Figure 6.a. a. Edge map based on RGB gra-
dient �eld rCRGB with non-maximum suppression.
b. Edge map based on c1c2c3 gradient �eld rCc1c2c3
with non-maximum suppression. c. Edge map based
on l1l2l3 gradient �eld rCl1l2l3 with non-maximum
suppression.

or geometry edge shown in Figure 6.c, (2) a highlight
edge shown in Figure 6.d, (3) a material edge shown in
Figure 6.e. Again minor performance is achieved when
intensity and highlights change smoothly over a wide
image range.

7 Conclusion

Because intensity-based edge detectors cannot distin-
guish between various transition types (that is whether
the transition is due to material changes, shadows,
abrupt surface orientation changes or highlights), in
this paper, we aim at using color information to classify
the physical nature of the edge.

In theory, the e�ect of varying imaging circum-
stances are analyzed. From this analysis we present
the color models c1c2c3 and l1l2l3. It is shown that
l1l2l3 varies with a change in material only, c1c2c3 with
a change in material and highlights, and RGB vary
with a change in material, highlights and geometry of
an object. From these color models we derive gradient
information which is used to classify edges in a color
image to be one of the following types: (1) a shadow
or geometry edge, (2) a highlight edge, (3) a material
edge.

Experiments conducted with the edge classi�cation
technique on di�erent color images show that the pro-
posed method successfully discriminates the four di�er-
ent edge types.

No constraints have been imposed on the images
and the camera image process other than that images
should be taken from chromatic objects illuminated by
average day-light color. It is our point of view that
these conditions are acceptable for a large variety of
applications yielding a promising re
ectance based edge

Figure 6: a. Second recorded color image. b. Re-

ectance based edge classi�cation. c. shadow and
geometry edges d. highlight edges e. material transi-
tion.

classi�er for images from real world scenes.
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