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Abstract

Typically, the edge detection problem in color images has
been addressed using the Euclidean Distance or similar
metrics. Recently, the Vector Angle metric was introduced
to use the hue and saturation components in a color image
in order to capture more accurate edge data. However,
both the Euclidean Distance and Vector Angle metrics
have some limitations. Two methods which combine both
metrics are introduced. They try to leverage the
advantages of each metric to better detect edges in
complex color images. The edge detection operators used
are based on the Vector Gradient and the Difference
Vector operators. Preliminary results are presented and
discussed.

1. Introduction

The purpose of a general image understanding system is
to recognize objects in a complex scene or document.
Typically, one of the first steps in such a system is edge
detection. Edge detection algorithms usually detect sharp
transitions within an image. These transitions are
characteristic of object edges. Once edges of an object are
detected other processing such as region segmentation,
text finding, and object recognition can take place.
Researchers have concentrated in the past few decades on
devising algorithms for grayscale image understanding.
With the advent of powerful personal computers, it is now
possible to move to the more computationally intensive
realm of color image understanding. There are many
benefits in doing so including the increased amount of
information for object location and processing.

In color image understanding, similar tasks are
performed as in the previously described grayscale image
world. The fundamental difference is the availability of
chromaticity information. The perception of color is
fundamental to the human visual system. Humans rely on
hue, saturation and intensity to make sense of the world. It
would make sense, therefore, to try to use this information
to improve the accuracy of current grayscale algorithms.

Several researchers have already used color images for
complex applications: text finding [10], enhancing binary
check documents [9], automatic granite inspection [8],
and color image map segmentation [6].

A typical color image capturing system relies on a
trichromatic input based on the additive primary colors
Red, Green and Blue. This is commonly know as the RGB
color space. There exist a number of other equivalent
color spaces such as CMY [2] (complementary primary
colors of Cyan, Magenta and Yellow), YIQ (opponent
color representation), HSI [2] (Hue, Saturation and
Intensity) or its generalized form HSV [3] (Hue,
Saturation and Value), LUV (Luminance, Chrominances
U and V) [3], etc.

The RGB model corresponds most closely with the
physical sensors for colored light such as the cones in the
human eye or red, green and blue filters in most color
CCD sensors. However, the human perception of color
qualities is reflected more accurately by the HSI model
[12]. The hue component is associated with the
fundamental or dominant color. It is measured as an angle
on a color circle where primary colors are separated by
120O angles (red at 0O, green at 120O and blue at 240O).
The saturation component represents the purity of a color
where mixed shades have low saturation values and pure
spectral colors are fully saturated. The hue and saturation
components specify the chromaticity information of a
color. The third component is the intensity representing
the overall brightness of a point. It is independent of
color. On the other hand, the LUV space was designed to
be perceptually correct which means that the Euclidean
distance quantifies perceptual differences in this space [3].

The use of color in edge detection increases the
amount of information needed for processing which
complicates the definition of the problem. For grayscale
images, edges are typically modeled as brightness
discontinuities.  Most edge detectors use local gradient
information or a difference operator in some fashion.



For color images, a number of approaches have been
proposed from processing individual planes [6,7] to true
vector-based approaches [1,4,5,8]. The Sobel operator has
been applied successfully to all three planes in the RGB
space and the gradients were summed to obtain the
resultant edges in [6]. The Sobel operator was also applied
to each component of the HSI space and the individual
results were combined using a trade-off parameter
between hue and intensity [7].  An interesting feature of
this trade-off parameter was its dependence of the level
saturation. Several researchers have applied vector order
statistics methods such as vector mean and vector median
filters [5] or the minimum vector dispersion (MVD) edge
detector [4] in the RGB space. Another approach for edge
detection is the calculation of the vector gradient using the
Euclidean distance [8].  This algorithm was found to work
best in the CIE LUV space. Finally, the Vector Angle and
Euclidean Distance metrics were compared based on a
modified Roberts operator in [1].

Ultimately, the performance of edge detectors depends
on the application at hand. In general, any algorithm
using a different space than RGB needs to compensate for
the computational complexity of the transformation.
Certain transformations such as YUV and YCBCR can be
performed very quickly while others such as HSI and CIE
LUV are very complex. On the other hand, RGB suffers
from the high correlation among the three planes.
However, a reliable and relatively simple method for
obtaining hue and saturation difference information
directly from RGB is the vector angle measure [1].

In this paper, we propose a method for combining
chromaticity difference information in the form of the
vector angle and intensity difference information in the
form of Euclidean Distance. One of the advantages of
such a combination is the ability to perform intensity-
invariant segmentation directly from the RGB image in
highly colored image regions and intensity-dependent
segmentation in areas of low color. The paper is organized
as follows.  In the second section, the Euclidean distance
and vector angle metrics will be described and their
differences shown.  In the next section, the adaptation of
the vector gradient and difference vector operators for
edge detection to the metrics is discussed. In the fourth
section, the combination methods are illustrated. In the
following section, results are described. Finally, the paper
ends with discussion and conclusion sections.

2. Distance Metrics

Two color distance metrics will be described in this paper.
The first metric is the Euclidean Distance, the second is

the vector angle [1]. These metrics could be applied to
other color spaces; however, in this paper we will discuss
only implementations in the RGB and LUV color spaces.

2.1. Euclidean Distance

Euclidean Distance (ED) is the metric usually used in N-
dimensional vector space. It is defined as
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In the RGB space, the Euclidean distance measure
does not quantify color similarity as well as it does in the
perceptually correct LUV space [8]. However, in general it
can be said ED is sensitive to variations in intensity, but
not very sensitive to variations in hue and saturation [1].

2.2. Vector Angle

An alternate metric could be the Vector Angle (VA)
measure [1] that is defined as

21

21cos
vv

vv T

rr

rr

⋅
=θ

As opposed to Euclidean distance, vector angle is
insensitive to intensity differences, but quantifies well hue
and saturation differences. Furthermore, two drawbacks to
using the angle θ  as an edge value are the complex
calculation of the inverse cosine and the problematic
computation of statistics on values in angular coordinates
[11]. A problem with using θcos  or θcos1−  is that the
dynamic range of values for small angles is small
compared to the dynamic range for small angles when
using θsin . This is important since we are interested in
emphasizing hue differences however small they may be.
Therefore, the θsin  was proposed in [1] as the actual
measure and is defined as
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2.3. Euclidean Distance vs. Vector Angle

To illustrate the difference between Euclidean distance
and vector angle several artificial images were
constructed. The definition of how good a metric is largely



depends on the application it is going to be used for.
Therefore, both of these metrics have advantages and
disadvantages in different situations which could be easily
exploited. In [1], the authors show how vector angle can
be used to detect strong edges in areas of differing hues
and very weak edges in areas of high hue similarity.
However, hue difference becomes irrelevant at low RGB
values since small variations in one of the three values can
produce large differences in the angle between two colors.
On the other hand, low intensity areas are not a problem
for Euclidean distance, which is unable to assess the
similarity of two pixels given their nearly identical hue
[1,8].

It seems that a combination of the vector angle and the
Euclidean distance metrics using a trade-off parameter
could overcome these limitations. Two combination
schemes will be discussed in Section 4.

3. Edge Detection Methods

In this paper, we will concentrate on vector-based
approaches for edge detection. For this purpose, we have
adapted the Difference Vector and Vector Gradient edge
detectors to both the Euclidean distance and vector angle
metrics.

3.1. Difference Vector Edge Detectors

A well-known edge detector in image processing is the
Difference Vector Edge Detector [4,5] which is a 3x3
operator calculating the maximum gradient across the
central pixel. The Euclidean distance version of this edge
detector can be written as
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where i represents one of the first four (out of a possible
eight) positions around the central pixel. This is done in
order to obtain measurements for the four directional
gradients (i.e., horizontal, vertical, left and right
diagonals) across that central pixel. ),( yxvi

r
is the ith color

vector around the central pixel ),( yx .

The vector angle version of the Difference Vector
Edge Detector, on the other hand, can be characterized by
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3.2. Vector Gradient Edge Detectors

The Vector Gradient Edge Detector is local operator
which computed the maximum distance in the desired

metric between the center pixel and the 8-connected pixels
adjacent to it. It has already been used successfully with
the Euclidean distance metric in the LUV space [8].

The Euclidean distance version of this operator can be
simply defined as
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where i is a counter representing each of the eight
neighboring pixels.

The vector angle version of this operator is written as
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4. Combination Methods

The Euclidean distance and the vector angle metrics
together take into account the intensity and the
chromaticity information from a color image. Therefore, it
is desirable to combine both of them to exploit their
particular characteristics. There are several possible ways
of combining these two metrics. Two will be explored in
this paper.

4.1. Intensity-Based Combination

A simple method of combining both metrics would
involve using the intensity plane of the image. One way of
calculating intensity involves taking a simple average of
the RGB components. The use of intensity as a trade-off
variable is a logical choice given that the vector angle
metric breaks down for low values of intensity (see
Section 2.3). Therefore, vector angle could be used when
both pixels being compared have high intensity and
Euclidean distance would be used when one of the two
pixels would have low intensity.

4.2. Saturation-Based Combination

A saturation-based combination of hue and intensity
planes for edge detection was first attempted in [7].
Carron and Lambert converted the RGB color image into
an HSI representation using the YC1C2 transformation as
an intermediary step. They argued that this form of
saturation is less sensitive to nonlinear effects than the
classical saturation formula as defined for HSI [7].

Carron and Lambert show that the noise variance
within the hue component is higher than within the
intensity component when saturation is low (i.e. intensity
is more relevant than hue). They also show the converse is
true when saturation is high (i.e. hue is more relevant
than intensity). We use the same saturation calculation.



The vector angle provides a good measure of hue
difference and Euclidean distance a good measure of
intensity difference directly within the RGB space. This is
potentially an improvement over using the hue and
intensity planes from a complex transformation as shown
in [7]. Therefore, when both pixels are highly saturated,
Vector Angle would be used, and when one of the pixels
is low in saturation Euclidean distance would be used.

4.3. Hue Relevance vs. Intensity Relevance

The relevance or trade-off parameter between an intensity
difference measure and a hue difference measure can be
calculated in the following manner. Given that for each of
the above methods, two parameters have to be calculated
(one for each pair of points being evaluated), a transition
function between the intensity and hue relevance is
necessary for each point in the pair.

For example, consider the case of saturation-based
combination. The sigmoid is a smooth transfer function
and is defined by
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where offset defines the transition midpoint and slope
describes the slope at that point. Both the slope and the
offset are application dependent and are set
experimentally in this paper. In this case, as saturation
increases the function's output slowly changes from 0 (i.e.
Euclidean distance bias) towards 1 (i.e. vector angle bias).

However, since every time two points are considered,
the vector angle metric should be used only if both points
are highly saturated, otherwise the Euclidean distance
metric or a combination of both should be used. This
combined function [7] is defined as
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4.4. Combined Edge Detection Operators

The saturation-based combination of the Difference
Vector operator would be represented by
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Notice that the maximum is being computed on the whole
gradient calculation. This is done in order to conserve the
relative meaning of the pixels. That is, we want to
combine the Euclidean distance Difference Vector
operator with its vector angle counterpart.

The saturation-based combination of the Vector
Gradient operator would be
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The question of normalizing the Euclidean distance
and vector angle components arises. For the purposes of
this paper, both metrics were normalized with respect to
the maximum obtainable value with the metric. In the

case of Euclidean distance this is 3255 , whereas the
values for vector angle are already scaled within the 0-1
range.

The same methodology was applied to the intensity-
based combinations.

5. Results

As a preliminary evaluation of the effectiveness of the
combination methods, one image was tested. The image
shown in Figure 3 has several important features that
make it suitable for showing the effectiveness of the
algorithms presented above. It has several important
features: shadows, areas with the same hue, but varying
saturation or intensity, areas of differing hue, but similar
intensity. As computer vision moves to an unconstrained
environment effectively dealing with such constraints is
very important. The edge detection is done on a smoothed
image; i.e., a 3x3 averaging kernel on each of the three
RGB planes has been used.

The edges have been computed using the various
methods presented earlier in the paper and were scaled to
the 0-255 range. The edges displayed constitute the top
2% (in relative strength) of the edges found for the vector
gradient approaches and the top 5% for the difference
vector approaches. We have found this to give more
reliable results than absolute thresholds. A relative
threshold also enables us to compare edge images more
easily. Results are shown in Figures 3-12.

In general, it can be noticed that the edges obtained
using the Euclidean distance-based edge detectors
(Figures 3-6) were much more cluttered than either the
vector angle-based (Figures 7 and 8) or combined distance
measure-based (Figures 9-12) methods. In this example,
the use of the LUV space (Figures 3 and 4) does not seem
to enhance the edge detection over the RGB-based results
(Figures 5 and 6) as was claimed in [8]. Many edges are
missing as in the LUV case and many shadow edges can
still be discerned.



The vector angle-based techniques produce weaker
intensity-based edges than Euclidean distance-based
methods. Of course this is an expected result. The edges
caused by the shadows have now almost entirely
disappeared since the hue of the shadow is practically
identical to the hue of the object it falls on (i.e., the
presence of a shadow changes the intensity of the color of
the object the shadow falls on). Both of these statements
illustrate the shortcomings of ED- and VA-based
approaches discussed above.

The edge images obtained using the combined
Euclidean distance and vector angle (Figures 9-12)
successfully show the elimination of false object edges due
to shadows and the restoration of edges that have
disappeared due to similar hues on both sides of the edge
(although the saturation and intensity were not the same);
e.g., the edge between the blue container and the purple
paper. This can be noticed especially for the intensity-
based combinations (Figures 11 and 12). The vector
gradient edge detector used with the intensity-based
combined metric shows the most promise although there
is some noise in the image and (Figure 12).

Other still color images were also tested (e.g. "Lena",
etc.); however, they showed neither improvement nor
degradation over the Euclidean distance-based edge
detectors. From this it can be hypothesized that most
probably only specific applications (e.g. robot vision)
where chromaticity information such as hue and
saturation are important would benefit from this new
methodology. As computer vision algorithms try to
understand scenes from increasingly unconstrained
environments, the accurate processing of color images
will become more important.

5.4. Discussion

The combination of Euclidean distance and vector angle
metrics helps to bridge the gap between intensity-based
and hue-based differences. The results obtained using the
combination methods enhance both metrics. This is
especially visible in areas of the image with a high
intensity or saturation.

However, there are still numerous problems to be
resolved. First, the problem of proper metric
normalization arises. In this paper, we assume that the
distances are equivalent in both metrics. This is a
preliminary step to discovering whether there is some
kind of correspondence between the two. Does a 0.1
measurement within the normalized Euclidean distance
metric mean the same as 0.1 within normalized vector
angle metric? Certainly not. This is a fundamental

question which needs to be resolved before the full benefit
of such a combination can be seen.

Second, in this paper, one combination method with
two variants was used (intensity- and saturation-based
combinations). This is a classical way of combining two
disparate metrics that try to achieve similar results. A mix
of saturation and intensity might achieve better
combination results since intensity is needed to make sure
hue is not used for low RGB pixel values and saturation is
needed to decide whether two pixels are highly saturated
and, therefore, more likely to have stable hue values.

Third, as mentioned before, the application is very
important when assessing the results of an algorithm. In
this case, edge detection constitutes only a preliminary
step in an image understanding process. The edge
detectors shown here should be evaluated in a broader
context to verify that their functioning is consistent with
our preliminary results. To this effect, more tests will be
carried out on artificial and real images to fully assess the
usefulness of the methods.

6. Conclusions

Two combination methods for combining Euclidean
distance and vector angle metrics in an edge detection
context were shown in this paper. Preliminary results
show that there is merit to trying to find a good way to
combine these intensity- and hue-based metrics. However,
before a good combination is found several questions need
to be answered. Research is currently underway to find
these answers.
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Figure 1: Original image Figure 2: Smoothed version of Figure 1

Figure 3: Euclidean Distance Difference Vector
operator applied to the LUV space.

Figure 4: Euclidean Distance Vector Gradient
operator applied to the LUV space.



Figure 5: RGB Euclidean Distance Difference Vector. Figure 6: RGB Euclidean Distance Vector Gradient.

Figure 7: RGB Vector Angle Difference Vector. Figure 8: RGB Vector Angle Vector Gradient.

Figure 9: Difference Vector with saturation-based
combined measure applied to the RGB space

(offset=0.10 and slope = 75).

Figure 10: Vector Gradient with saturation-based
combined measure applied to the RGB space

(offset=0.25 and slope = 75).



Figure 11: Difference Vector with intensity-based
combined measure applied to the RGB space

(offset=0.10 and slope = 75).

Figure 12: Vector Gradient with intensity-based
combined measure applied to the RGB space

(offset=0.40 and slope = 75).
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