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Abstract mologists through a visual examination of serial fundus pho-
tographies where these lesions appear as textured yellow re-

In this paper, we present an original unsupervised segmengions against a red background.

ation scheme which splits a grey level image into different ag it js difficult to distinguish the contours of these yel-

sets of connected pixels whose grey levels are homogga regions, the ophthalmologists can't achieve accurate and
eous. This approach is based on an analysis of a triang|iaple measures.

gular table denoted "Normalized connectivity degrees pyr-

am|q ' Th|§ .rT‘ethO.d Is used in ordpr to detect pytomegtb process colorimetric and geometrical information of the
alovirus retinitis lesions by fundus image analysis. First

determine th ber of pixels cl d thei tetinitis lesions by color fundus images analysis. Such a
\%? N ermlpe E nlursn@.e_r Ot PIXEIS ctadssbes ant ‘ elr fo;es'izstem will be designed in order to evaluate the evolution of
€ core o gac class; 1S represented by an interval of o agiopy by the comparison of successive fundus images.

grey levelgminc;, maxc;]. For classification purpose, the

pixels whose grey level belongs to such an interval are la- In this paper, we present a new image segmentation

belled to the corresponding class. The other pixels are ag_cheme designed to extract the homogeneous regions which

signed by comparison of their conditional probability to befepresent the retinitis lesions from grey level fundus images.

long to the different classes. The segmentation is achieved by an unsupervised pixels
classification scheme in which an homogeneous region is a
set of connected pixels which are assigned to the same class
1 Introduction characterized by the grey levels of its pixels.
In order to segment biomedical images, Cheng and al.
A retinal lesion called CytoMegaloVirus (CMV) retinitis [1] propose a segmentation method using a competitive hop-
was found for patients suffering from immune deficiencyield neural network based upon the global grey levels dis-
syndrome (AIDS). The patients may lose their visual cagribution. Vitulano and al. [2] propose a hierarchical tree
ability because this ocular infection attacks the optic nervepproach (e.g. quad-tree). The relation between the entropy
the papilla, blood vessels, and the fovea, involving a praf an image and the entropy of its sub-domains is explored
gressive retinal destruction. The ophthalmologists have & an uniformity predicate. Recently, another developed ap-
evaluate the evolution of the lesion surface and the color @foach consists in applying the concept of fuzzy objects in
the retinal in order to determine the response of the CM¥rder to detect multiple sclerosis lesions [3]. An operator
retinitis to antiviral therapy. interactively selects a few points in the image by pointing
The evolution of these lesions is evaluated by ophthadlifferent objects in the scene. Then, each of these objects is

Such limitations call for an automatic system in order
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modelized as a fuzzy connected set. The holes in the unifr< Csigy(r,y) <8
of these objects correspond to potential lesions sites. The
weakness of this lesions detection system is a high com w2 3 3
tational cost. Dealing with detection of bright lesions on ey 5| P(x,y) | 8] Cspsa(,y) =3, Csag(e,y) =8
fundus images, Goldbaum and al. [4] propose to convolu e ! 4
a flat circular bright object template at multiple scales to de-
tect potential bright lesions. The border of the gross lesions

are refined by an histogram thresholding technique.

Among the literature, dealing with image segmentatior2-2 Connectivity degree of a set of pixels
some papers privilege either the photometric properties of S[k, l]

the pixels [5, 6] or their spatial properties [7]. We define the connectivity degree as -

Our method analyses simultaneously the photometric .
and the spatial pixels properties, in order to determine the~p g% 17) = Ceatn 2
number of classes in a pixel population and their core. The (St 1) CardS[k,l] Z sten(@y) (2)
photometric and spatial pixels properties are merged into
a new concept : the "normalized connectivity degrees pyit represents the mean value of the connectivity viith, /]
amid”. of the pixels which belong to the sé&fk,[]. A connectiv-

The connectivity concepts which are presented in thity degree standing close to eight indicates that most of the
second section of this paper, are used to define a new réﬁ)_(els which belong to the set are connected. On the other
resentation of the connectivity properties of an image: thgand, a low connectivity degree, close to zero, means that
normalized connectivity degrees pyramid, denavedD P, the pixels which belong t§[k, [] are scattered in the image.
which is presented in the third section.

Then, in the fourth section, we explain the classificatiod-3 Normalized connectivity degree of a set of
scheme which is based on the analysis of this pyramid. We  pixels S[k, 1]
explain how the pixels are assigned to the different class
which represent the homogeneous regions in the image.

Figure 1: Examples of connectivity

P(z,y)€S[k,l]

'ﬁ]e connectivity degree of a set depends on the size of the
) _ ~ grey levelintervalk, [] but doesn't take into account the dis-
In the last part, we show how this approach is aplo"eaersion ofthe grey levels of its pixels. That leads us to define
with success to the segmentation of fundus images in ordgiormalized connectivity degree of a set by its variance, in
to extract retinitis lesions. order to obtain a measure of its connectivity which is sens-
itive to its grey levels dispersion.
We define the normalized connectivity degree as :

i ; DC(S[k,1])
2 Connectivity notions NCD(S[k, 1)) = 1 — Gl A3)
2.1 Connectivity of a pixel with a set of pixels or animage coded on N grey levels, with :
1

Slke, 1 moy(k.l) = e > gy @)
Let P(z,y) be the pixel with spatial coordinatds:, y), Pley)esiki
whose grey level igy(z,y), g(z,y) € [0,1,...,N —1]. and:
Let V(z,y) be the set of pixels that belong to the 8-
neighborhood of(z, y) andS|k, [] the set of pixels whose  var(k,l) =
grey levels lie between levéd and levell, with 0 < k < 1 5
N —1and0 < [ < N — 1. The connectivity ofP(z, y) CardSTh.1] > (g(a,y) — moy(k,1))* (5)
with S[k, 1], denotedCs, (2, ), is the number of pixels " P(e,y)ESTk,]
which belong simultaneously [k, I] andV (z, y) (see fig.

Let us consider fig. 2, which represents an image which

1 contains two regions :

— Ry composed of pixels with grey levels that belong to
Csir(z,y) = the interval[3, 4],

Card{P(i,j) € V(x, P(i,j) € Sk, 1 ] _
{P(i.4) (=.9) | P(i.J) LIRS — R, composed of pixels with grey levels that belong to

the interval[8, 9].
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numberp containsN — p cells. & is the horizontal rank in
the pyramid witht = 0,..., N — p — 1 so that the cell on

s1slolslolslolslslolo the line numbep of rankk is denoted}, .
8/8/9/8/3/4/3/9[8|9]8
8/83/34/3/4/3[3/9]9
9/3|4/34]4|3|3/4]|8,]9
4|3(4(%]3]3]4|3[4/9 3
304|3/4]3/4]8]9)8]9]9 |
|
1
, [ o]
CD(S[3,9]) > CD(S[3,4]) and | [ [ ]
CD(S[3,9]) > CD(S[8,9)) | | ‘ | ‘ | ‘ | ‘ | ‘
[ | [ L[ ]
NCD(S[3,4]) > NCD(S[3,9]) and I [ 1 [ [
NCD(S[8,9]) > NCD(S[3,9]) e

grey levels

Figure 2: Example of connectivity degrees and normalized Figure 3: Normalized connectivity degrees pyramid
connectivity degrees

The cellT}, , contains the normalized connectivity de-
The connectivity degree af[3,9] is greater than the gree of the pixels whose the grey levels are betweend
connectivity ofS[3,4] and the connectivity o§[8,9]. The & + p. (see fig. 3).
reason isn’t that the region, formed by pixels$JB, 9], is
more homogeneous than the pixels&iB,4]. That's be- Ty, = NCD(S[k,k +p]) =

causeS[3,4] is included inS[3,9]. If we want to distin- NCD({S(k)US(k+1)U...US(k+p)}) (6)
guish R; from R,, we have to compare of the normalized
connectivity degrees. The base line of the pyramid, i.e. line numbercontains

As these degrees are normalized by the variance of th¢ — 1 cells T}, ; which correspond to the normalized con-
grey levels, NCD[3,4] and NCD[8,9] are greater than nectivity degrees ofS[k, k + 1] with & = 0,...,N — 2.
NCDJ3,9]. The line p, containsN — p cells T}, , which correspond

In conclusion, this case illustrates that the normalizetb the normalized connectivity degreesSik, k + p] with
connectivity degree seems to be an interesting measurefof= 0,..., N —p — 1.
the connectivity of a set of pixels.

4 Pixels classification
3 Normalized connectivity degrees

pyramid 4.1 Introduction
A pixel classification scheme, based on the analysis of the

The normalized connectivity degree is a good measure in aWC D P, is proposed, which is divided into two steps.

der to determine the sets of pixels which representhomogen- First, we analyze the pyramid in order to evaluate the

eous regions in an image. So, it is interesting to detect tmumber of classes and their cores. We suppose that a core

higher normalized connectivity degrees. For this purposef a classC; is the set of prototypes pixels of the claSs,

we introduce a new representation concept of connecti${minc,, mazc;]. So the pixels whose grey levels are in

ity properties: the normalized connectivity degrees pyramifininc; , maxc;] constitute the core of;.

NCDP. Then, each class is examined a second time in order to
This NCDP is a triangular table which is composed ofdecide if it must be split into different classes of pixels.

N superposed lines which are identified by their number When the classes are determined, the pixels of the image

p=1,...,N — 1. N is the number of grey levels. A line are labelled.
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4.2 Evaluation of the number of classes and  Theanalysis of each linegenerates a number of candid-
their core ate classes denotédC'(p) with 0 < NC(p) < (N —p)/2.
_ . . LetTyr ,, j = 1,2,..,NC(p),0 < k¥ < N —p— 1 denote
The analysis of the normalized connectivity degrees ptheNé’(p) local maximums of the line numbgr Each can-
amid is achieved Iing by Iine_, from the bas_e line, i.e. "nedidate clas©? has a cores[k?, k¥ + p]. (see fig. 4 and 5).
numberl, to the top, i.e. the lin@v — 1. The line numbep Now, we expljain how we seléct t]he line numipgffor which

of the pyra_rmd contamé_f P cells, Ty ,, which represent g consider thalvC'(py) is the actual number of classes.
the normalized connectivity degrees of sets of pixels. These

N - P degrees fo_rm a series of dis_cre_te_ values_ with local line number NC(p)
maximums and minimums from which it is possible to ex-

tract some features (see fig. 4). top of NV :
pyramid 1

Tip :

1

\ \ 2

[ \

\ \ 3

p | [ N-p cells DCN(E[kkpD | 4

4

[ \

base of ‘ | 5

the 2 [ N-2 cells DCN(E[k.k+2]) | 8
, ; rank <l’_“hc pyramid | 3 N-1 cells DCN(E[K,k+1]) | 1s

cells at € [ine p

Figure 6: Number of candidate classes

Figure 4: A series of discrete valu . .

g er. Experiments shows that the number of candidate classes

varies significantly from line to line at the bottom of the pyr-

k=0,1,...., N —p— 1. It corresponds to the top of an hill. amid (\;Vh”ﬁ It becofmﬁs more a_gd ?orﬁ stable ashweh_mrc])ve
That means that the sé&fk:, k1 + p] is the set of pixels towards the top of the pyramid. Furthermore, the higher
. LR we consider the line in the pyramid, the lower the number

among theV — p possible sets, which form the more homo- . . .

eneous redion in the image. So. in order to determine tl'?f candidate classes is, and consequently the higher the car-

glasses of %xels We bro gsé o detect the local maximu u‘iinal of such classes is. When we consider a line close to the

P ' prop r[]op of the pyramid, the number of candidate classes tends to

of the seriedl}, ,. To each local maximum of this series, is . o : 8
. P . one, i.e. one class containing all the pixels of the image (see
associated a candidate class of line number fig. 6 and 7)

The detection of the local maximums is achieved by a
MAX-MIN algorithm which is detailed in [8].

Let suppose thal}, ;, is the maximum value of} ,,

\s] Number of candidate classes
NC(p)

:
- oo
line number

I I R v
:

1 6 Po N-1
Base of the pyramid Top of the pyramid

| | | | | | | | | | | | | | | | | | | | | | | | | Figure 7: Variation ofVC(p) corresponding to fig. 6

= e [ ] B 1 1 B [ [ Fig. 6 illustrates the behavior & C(p), evaluated from

[T TTIT I T T TITITITITTTIITT the analysis of &VC D P.

— Fig. 7 represents the functidiiC(p) of fig. 6. At the
base of the pyramidyC(1) is equal to 15NC(2) is equal

— to 8, NC(3) is equal to 5, thenVC(i) is equal to 4 for
cr ey cr < i €[4,...,6].
In the current version of our algorithm, we progress from

Figure 5: Pyramid which corresponds to fig. 4 the base of the pyramid to the top and we stop the analysis
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where the number of candidate classes is stabilized.

The analysis of the variations 6fC(p) of fig. 7 shows fine po
that the first range of for which NC(p) becomes stable T w
starts atpp = 6. SONC(py) = 4 is the actual number of ki.p,
classes.
4.3 Analysis of each class ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
4.3.1 Introduction 2 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
Once theNC(py) classes’; are detected, each class hasa | 1 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘

coreS[k®, k5° + po). ,
It's possible thatasﬁ[kfo,k§’°+po] represents the core ST T T T grey levels
of different classes which are merged iidtg. In this case,

the class’'; must be split into different classes. P

N-1
Figure 9: New pyramid with grey levels baBe°. k% + po]
] [ [ ]

[ ]
If the analysis yields one class, that means that the core
line po is constituted of one set of connected pixels. The ofass
musn’t be divided.

On the contrary, if the number of actual classes is greater
than one, the class; must be split into subclasses

After the analysis of each class, we determine the
new number of classe®’c and their cores. We note
S[minc,;, maxc,] the final core of each clags; with j =
1,...,Ne.

v, grey levels
ki kj “+ po

Figure 8: A class constituted of two distinct cores . o
4.4 Pixels classification

Let's consider the example of fig. 8. Our method de-
termines a local maximum represented]bxo’po. The cell  Our classification scheme is based on the probabilities com-
Tyro ,, COrTesponds to a class coBgk’°, k2° + po] which parison of_a pixel to belong to a class. This proba_bility is
has an high normalized connectivity degree. If this set ofvaluated in accordance with the grey level of the pixel and
pixels contains two different and not connected sets B and (€ cooccurences of grey levels in the image. A pixel is la-
which constitute each a distinct class, the class which is a8€lléd to a class if its probability to belong to this class is
sociated td» , , must be split into two different classes. 9"€ater than the other probabilities.

’ Let's note uc,(P(x.y)), the probability for a pixel
P(z,y), whose grey level ig(z,y), to belong to a class
Cj.

In order to verify if a class cor,S[ki?o’ kfo +p9] isn’t consti- If P(x,y) belongs to the Sﬂ[mino,-o 7 mawo,-o], which
tuted of not gor_mected class cores, Wep?und a mé@DP represents the core of the clags,, then: uc; (P(z,y)) =
whose base is included betweeff and#® + po. This PY™ | andyuc,, (P(z,3)) =0 ¥j # Jo.

amid containgy lines. (See fig. 9) ,

The analysis method of thi§C D P is described inpara- ' (@) doesn't belong to any core of class, then the
graph 4.2. That is to say, it's based on the evaluation of thirobability of P(z,y) is evaluated as a function of cooc-
number of candidate classes with the MAX-MIN method orUr€Nces.
each line. In this case, we propose to evaluate the probability of

4.3.2 Second analysis
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P(z,y) to belong to the clas§; by:

po; (P(z,y)) =

1
. *
mazc; —ming; + 1

mazc;

Occ(g(z,y),1)

N-1
l:mincj z_:o OCC(Q(:L'; y); m)
(7)

whereOcc(g1, g2) is the number of occurences in the image
of a pixel with grey levely, in the 8-neighborhood of a pixel
with grey levelgs.

5 Results

Figure 10: Image of a fundus

In order to illustrate our method, we choose a part of a
fundus image which contains 5 kinds of regions (See fig.
10), namely :

— The papilla where the veins merge,

— The eye fundus which is constituted of healthy cells,

— The veins,

— A heart of the retinitis lesion,

— The transition between the eye fundus and the heart of

alesion. These pixels represent the cells which may be
contaminated by the lesion.

Figure 11: Image of the labelled pixels

Our algorithm has unsupervisely identified 10 classes.
We have represented the classification results by an image .
of labelled pixels. The grey level of a labelled pixel is thed  Conclusion
mean of the grey levels of the corresponding class. (see fig.

11). In this paper, we have presented an original unsupervised

In the area of interest, we can identify 5 main classes: segmentation scheme which splits a grey level image into

different sets of connected pixels whose grey levels are ho-
— C1: Pixels which represent the heart of the lesion, mogeneous. This approach is based on an analysis of a
triangular table denoted "Normalized connectivity degrees
— C2, C3, C4: Pixels which represent the transition zongyramid”. This method is used in order to detect cytomeg-
between the lesions and the healthy cells alovirus retinitis lesions by fundus image analysis. First,
we determine the number of pixels classes and their cores.
— The other classes : The veins and the eye fundus. The core of each class; is represented by an interval of
grey levelgminc;, maxc;]. For classification purpose, the

The close examination of fig. 11, shows that the lesionpixels whose the grey level belongs to such an interval are
hearts are well segmented. Thanks to our scheme, we detladtelled to the corresponding class. The other pixels are
different levels of transition between healthy and infectedssigned by comparison of their conditional probability to
cells. This gives an interesting representation of a lesidmelong to the different classes. The ophthalmologists are
to the ophthalmologists. With such a labelled image, ouyresently evaluating the accuracy and the performance of
system can provide the basis for further geometric measutbsés algorithm in field conditions with large populations of
of the lesions. subjects. Furthermore, we are looking for the generalization
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of our scheme to color image segmentation.
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