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Abstract

In this paper, we present an original unsupervised segment-
ation scheme which splits a grey level image into different
sets of connected pixels whose grey levels are homogen-
eous. This approach is based on an analysis of a trian-
gular table denoted ”Normalized connectivity degrees pyr-
amid”. This method is used in order to detect cytomeg-
alovirus retinitis lesions by fundus image analysis. First,
we determine the number of pixels classes and their cores.
The core of each classCj is represented by an interval of
grey levels[minCj ;maxCj ]. For classification purpose, the
pixels whose grey level belongs to such an interval are la-
belled to the corresponding class. The other pixels are as-
signed by comparison of their conditional probability to be-
long to the different classes.

1 Introduction

A retinal lesion called CytoMegaloVirus (CMV) retinitis
was found for patients suffering from immune deficiency
syndrome (AIDS). The patients may lose their visual cap-
ability because this ocular infection attacks the optic nerve,
the papilla, blood vessels, and the fovea, involving a pro-
gressive retinal destruction. The ophthalmologists have to
evaluate the evolution of the lesion surface and the color of
the retinal in order to determine the response of the CMV
retinitis to antiviral therapy.

The evolution of these lesions is evaluated by ophthal-

mologists through a visual examination of serial fundus pho-
tographies where these lesions appear as textured yellow re-
gions against a red background.

As it is difficult to distinguish the contours of these yel-
low regions, the ophthalmologists can’t achieve accurate and
reliable measures.

Such limitations call for an automatic system in order
to process colorimetric and geometrical information of the
retinitis lesions by color fundus images analysis. Such a
system will be designed in order to evaluate the evolution of
a lesion by the comparison of successive fundus images.

In this paper, we present a new image segmentation
scheme designed to extract the homogeneous regions which
represent the retinitis lesions from grey level fundus images.

The segmentation is achieved by an unsupervised pixels
classification scheme in which an homogeneous region is a
set of connected pixels which are assigned to the same class
characterized by the grey levels of its pixels.

In order to segment biomedical images, Cheng and al.
[1] propose a segmentation method using a competitive hop-
field neural network based upon the global grey levels dis-
tribution. Vitulano and al. [2] propose a hierarchical tree
approach (e.g. quad-tree). The relation between the entropy
of an image and the entropy of its sub-domains is explored
as an uniformity predicate. Recently, another developed ap-
proach consists in applying the concept of fuzzy objects in
order to detect multiple sclerosis lesions [3]. An operator
interactively selects a few points in the image by pointing
different objects in the scene. Then, each of these objects is



modelized as a fuzzy connected set. The holes in the union
of these objects correspond to potential lesions sites. The
weakness of this lesions detection system is a high compu-
tational cost. Dealing with detection of bright lesions on eye
fundus images, Goldbaum and al. [4] propose to convolute
a flat circular bright object template at multiple scales to de-
tect potential bright lesions. The border of the gross lesions
are refined by an histogram thresholding technique.

Among the literature, dealing with image segmentation,
some papers privilege either the photometric properties of
the pixels [5, 6] or their spatial properties [7].

Our method analyses simultaneously the photometric
and the spatial pixels properties, in order to determine the
number of classes in a pixel population and their core. The
photometric and spatial pixels properties are merged into
a new concept : the ”normalized connectivity degrees pyr-
amid”.

The connectivity concepts which are presented in the
second section of this paper, are used to define a new rep-
resentation of the connectivity properties of an image: the
normalized connectivity degrees pyramid, denotedNCDP ,
which is presented in the third section.

Then, in the fourth section, we explain the classification
scheme which is based on the analysis of this pyramid. We
explain how the pixels are assigned to the different classes
which represent the homogeneous regions in the image.

In the last part, we show how this approach is applied
with success to the segmentation of fundus images in order
to extract retinitis lesions.

2 Connectivity notions

2.1 Connectivity of a pixel with a set of pixels
S[k; l]

Let P (x; y) be the pixel with spatial coordinates(x; y),
whose grey level isg(x; y), g(x; y) 2 [0; 1; :::; N � 1].
Let V (x; y) be the set of pixels that belong to the 8-
neighborhood ofP (x; y) andS[k; l] the set of pixels whose
grey levels lie between levelk and levell, with 0 � k �
N � 1 and0 � l � N � 1 . The connectivity ofP (x; y)
with S[k; l], denotedCS[k;l](x; y), is the number of pixels
which belong simultaneously toS[k; l] andV (x; y) (see fig.
1) :

CS[k;l](x; y) =

CardfP (i; j) 2 V (x; y) j P (i; j) 2 S[k; l]g (1)

0 � CS[k;l](x; y) � 8

5 3 3
5 P (x; y) 8
5 7 4

CS[3;4](x; y) = 3, CS[3;8](x; y) = 8.

Figure 1: Examples of connectivity

2.2 Connectivity degree of a set of pixels
S[k; l]

We define the connectivity degree as :

CD(S[k; l]) =
1

CardS[k; l]

X

P (x;y)2S[k;l]

CS[k;l](x; y) (2)

It represents the mean value of the connectivity withS[k; l]
of the pixels which belong to the setS[k; l]. A connectiv-
ity degree standing close to eight indicates that most of the
pixels which belong to the set are connected. On the other
hand, a low connectivity degree, close to zero, means that
the pixels which belong toS[k; l] are scattered in the image.

2.3 Normalized connectivity degree of a set of
pixelsS[k; l]

The connectivity degree of a set depends on the size of the
grey level interval[k; l] but doesn’t take into account the dis-
persion of the grey levels of its pixels. That leads us to define
a normalized connectivity degree of a set by its variance, in
order to obtain a measure of its connectivity which is sens-
itive to its grey levels dispersion.

We define the normalized connectivity degree as :

NCD(S[k; l]) =
DC(S[k; l])

1 + var(k; l)
(3)

for an image coded on N grey levels, with :

moy(k; l) =
1

CardS[k; l]

X

P (x;y)2S[k;l]

g(x; y) (4)

and :

var(k; l) =

1

CardS[k; l]

X

P (x;y)2S[k;l]

(g(x; y)�moy(k; l))2 (5)

Let us consider fig. 2, which represents an image which
contains two regions :

– R1 composed of pixels with grey levels that belong to
the interval[3; 4],

– R2 composed of pixels with grey levels that belong to
the interval[8; 9].



CD(S[3; 9]) > CD(S[3; 4]) and
CD(S[3; 9]) > CD(S[8; 9])

NCD(S[3; 4]) > NCD(S[3; 9]) and
NCD(S[8; 9]) > NCD(S[3; 9])

Figure 2: Example of connectivity degrees and normalized
connectivity degrees

The connectivity degree ofS[3; 9] is greater than the
connectivity ofS[3; 4] and the connectivity ofS[8; 9]. The
reason isn’t that the region, formed by pixels ofS[3; 9], is
more homogeneous than the pixels ofS[3; 4]. That’s be-
causeS[3; 4] is included inS[3; 9]. If we want to distin-
guishR1 from R2, we have to compare of the normalized
connectivity degrees.

As these degrees are normalized by the variance of the
grey levels,NCD[3; 4] and NCD[8; 9] are greater than
NCD[3; 9].

In conclusion, this case illustrates that the normalized
connectivity degree seems to be an interesting measure of
the connectivity of a set of pixels.

3 Normalized connectivity degrees
pyramid

The normalized connectivity degree is a good measure in or-
der to determine the sets of pixels which represent homogen-
eous regions in an image. So, it is interesting to detect the
higher normalized connectivity degrees. For this purpose,
we introduce a new representation concept of connectiv-
ity properties: the normalized connectivity degrees pyramid
NCDP .

ThisNCDP is a triangular table which is composed of
N superposed lines which are identified by their numberp,
p = 1; :::; N � 1. N is the number of grey levels. A line

numberp containsN � p cells. k is the horizontal rank in
the pyramid withk = 0; :::; N � p� 1 so that the cell on
the line numberp of rankk is denotedTk;p.

Figure 3: Normalized connectivity degrees pyramid

The cellTk;p contains the normalized connectivity de-
gree of the pixels whose the grey levels are betweenk and
k + p. (see fig. 3).

Tk;p = NCD(S[k; k + p]) =

NCD(fS(k) [ S(k + 1) [ ::: [ S(k + p)g) (6)

The base line of the pyramid, i.e. line number1, contains
N � 1 cellsTk;1 which correspond to the normalized con-
nectivity degrees ofS[k; k + 1] with k = 0; :::; N � 2.
The line p, containsN � p cells Tk;p which correspond
to the normalized connectivity degrees ofS[k; k + p] with
k = 0; :::; N � p� 1.

4 Pixels classification

4.1 Introduction

A pixel classification scheme, based on the analysis of the
NCDP , is proposed, which is divided into two steps.

First, we analyze the pyramid in order to evaluate the
number of classes and their cores. We suppose that a core
of a classCj is the set of prototypes pixels of the classCj ,
S[minCj ;maxCj ]. So the pixels whose grey levels are in
[minCj ;maxCj ] constitute the core ofCj .

Then, each class is examined a second time in order to
decide if it must be split into different classes of pixels.

When the classes are determined, the pixels of the image
are labelled.



4.2 Evaluation of the number of classes and
their core

The analysis of the normalized connectivity degrees pyr-
amid is achieved line by line, from the base line, i.e. line
number1, to the top, i.e. the lineN � 1. The line numberp
of the pyramid containsN � p cells,Tk;p, which represent
the normalized connectivity degrees of sets of pixels. These
N � p degrees form a series of discrete values with local
maximums and minimums from which it is possible to ex-
tract some features (see fig. 4).

Figure 4: A series of discrete valuesTk;p

Let suppose thatTk1;p is the maximum value ofTk;p,
k = 0; 1; :::; N � p� 1. It corresponds to the top of an hill.
That means that the setS[k1; k1 + p] is the set of pixels
among theN � p possible sets, which form the more homo-
geneous region in the image. So, in order to determine the
classes of pixels, we propose to detect the local maximums
of the seriesTk;p. To each local maximum of this series, is
associated a candidate class of line numberp.

The detection of the local maximums is achieved by a
MAX-MIN algorithm which is detailed in [8].

Figure 5: Pyramid which corresponds to fig. 4

The analysis of each linep generates a number of candid-
ate classes denotedNC(p) with 0 � NC(p) � (N � p)=2.
LetTkp

j
;p, j = 1; 2; :::; NC(p), 0 � kpj � N � p� 1 denote

theNC(p) local maximums of the line numberp. Each can-
didate classCp

j has a coreS[kpj ; k
p
j + p]. (see fig. 4 and 5).

Now, we explain how we select the line numberp0 for which
we consider thatNC(p0) is the actual number of classes.

Figure 6: Number of candidate classes

Experiments shows that the number of candidate classes
varies significantly from line to line at the bottom of the pyr-
amid while it becomes more and more stable as we move
towards the top of the pyramid. Furthermore, the higher
we consider the line in the pyramid, the lower the number
of candidate classes is, and consequently the higher the car-
dinal of such classes is. When we consider a line close to the
top of the pyramid, the number of candidate classes tends to
one, i.e. one class containing all the pixels of the image (see
fig. 6 and 7).

Figure 7: Variation ofNC(p) corresponding to fig. 6

Fig. 6 illustrates the behavior ofNC(p), evaluated from
the analysis of aNCDP .

Fig. 7 represents the functionNC(p) of fig. 6. At the
base of the pyramid,NC(1) is equal to 15,NC(2) is equal
to 8, NC(3) is equal to 5, thenNC(i) is equal to 4 for
i 2 [4; :::; 6].

In the current version of our algorithm, we progress from
the base of the pyramid to the top and we stop the analysis



where the number of candidate classes is stabilized.
The analysis of the variations of of fig. 7 shows

that the first range of for which becomes stable
starts at . So is the actual number of
classes.

4.3 Analysis of each class

4.3.1 Introduction

Once the classes are detected, each class has a
core .

It’s possible that a set represents the core
of different classes which are merged into. In this case,
the class must be split into different classes.

Figure 8: A class constituted of two distinct cores

Let’s consider the example of fig. 8. Our method de-
termines a local maximum represented by . The cell

corresponds to a class core which
has an high normalized connectivity degree. If this set of
pixels contains two different and not connected sets B and C
which constitute each a distinct class, the class which is as-
sociated to , must be split into two different classes.

4.3.2 Second analysis

In order to verify if a class core isn’t consti-
tuted of not connected class cores, we build a new
whose base is included between and . This pyr-
amid contains lines. (See fig. 9)

The analysis method of this is described in para-
graph 4.2. That is to say, it’s based on the evaluation of the
number of candidate classes with the MAX-MIN method on
each line.

Figure 9: New pyramid with grey levels base

If the analysis yields one class, that means that the core
is constituted of one set of connected pixels. The class
musn’t be divided.

On the contrary, if the number of actual classes is greater
than one, the class must be split into subclasses

After the analysis of each class, we determine the
new number of classes and their cores. We note

the final core of each class with
.

4.4 Pixels classification

Our classification scheme is based on the probabilities com-
parison of a pixel to belong to a class. This probability is
evaluated in accordance with the grey level of the pixel and
the cooccurences of grey levels in the image. A pixel is la-
belled to a class if its probability to belong to this class is
greater than the other probabilities.

Let’s note , the probability for a pixel
, whose grey level is , to belong to a class

.

If belongs to the set , which
represents the core of the class , then:

and .

If doesn’t belong to any core of class, then the
probability of is evaluated as a function of cooc-
curences.

In this case, we propose to evaluate the probability of



P (x; y) to belong to the classCj by:

�Cj (P (x; y)) =

1

maxCj �minCj + 1
�

maxCjX

l=minCj

Occ(g(x; y); l)
N�1P
m=0

Occ(g(x; y);m)

(7)

whereOcc(g1; g2) is the number of occurences in the image
of a pixel with grey levelg1 in the 8-neighborhood of a pixel
with grey levelg2.

5 Results

In order to illustrate our method, we choose a part of a
fundus image which contains 5 kinds of regions (See fig.
10), namely :

– The papilla where the veins merge,

– The eye fundus which is constituted of healthy cells,

– The veins,

– A heart of the retinitis lesion,

– The transition between the eye fundus and the heart of
a lesion. These pixels represent the cells which may be
contaminated by the lesion.

Our algorithm has unsupervisely identified 10 classes.
We have represented the classification results by an image
of labelled pixels. The grey level of a labelled pixel is the
mean of the grey levels of the corresponding class. (see fig.
11).

In the area of interest, we can identify 5 main classes:

– C1 : Pixels which represent the heart of the lesion,

– C2, C3, C4 : Pixels which represent the transition zone
between the lesions and the healthy cells

– The other classes : The veins and the eye fundus.

The close examination of fig. 11, shows that the lesion’s
hearts are well segmented. Thanks to our scheme, we detect
different levels of transition between healthy and infected
cells. This gives an interesting representation of a lesion
to the ophthalmologists. With such a labelled image, our
system can provide the basis for further geometric measures
of the lesions.

Figure 10: Image of a fundus

Figure 11: Image of the labelled pixels

6 Conclusion

In this paper, we have presented an original unsupervised
segmentation scheme which splits a grey level image into
different sets of connected pixels whose grey levels are ho-
mogeneous. This approach is based on an analysis of a
triangular table denoted ”Normalized connectivity degrees
pyramid”. This method is used in order to detect cytomeg-
alovirus retinitis lesions by fundus image analysis. First,
we determine the number of pixels classes and their cores.
The core of each classCj is represented by an interval of
grey levels[minCj ;maxCj ]. For classification purpose, the
pixels whose the grey level belongs to such an interval are
labelled to the corresponding class. The other pixels are
assigned by comparison of their conditional probability to
belong to the different classes. The ophthalmologists are
presently evaluating the accuracy and the performance of
this algorithm in field conditions with large populations of
subjects. Furthermore, we are looking for the generalization



of our scheme to color image segmentation.
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