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ABSTRACT Recent growth in the number of dig-
ital images available motivates the development
of image/video databases for the effective man-
agement of these ever-increasing images. A com-
mon image retrieval task requires retrieving all
images in the database similar in image content to
an example query image. In this paper, we
develop a simple, fast and robust motion segmen-
tation algorithm to separate images into indepen-
dently moving objects and an indexing scheme
that uses the trajectories, shapes and image flow
vectors of the independently moving objects to
insert/query the sequences in a database. In order
to test our ideas, we developed a video database
prototype and experimented with real images
from scenes showing moving cars.

1. Introduction

Recent growth in the number of digital image
sequences or video available in a computer moti-
vates the development of video databases for the
effective management of the ever-increasing vol-
ume of information. A video database stores and
retrieves image sequences in an efficient way based
on content although there are more traditional
databases that represent the content of an image
sequence by a user-assigned text label. This later
approach not only requires the user to provide a text
label for every image sequence in a database but
also the subjectivity in human descriptions may
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result in a retrieval failure due to a difference in the
text description about the image sequence during
insertion and query. For this reason, recent research
in video databases (for example [5, 6, 9, 14, 21, 24,
22]) focuses on indexing based on image content by
the database itself.Niblack et al [21] use color, tex-
ture and shape of objects as a representation of con-
tent of images stored in an image database. Objects
are identified by a user sketching out their outlines
and then optimally traced out in a computer using
active contours or snakes. Petrakis and Faloutsos
[24] measure the content of medical images by the
geometric properties such as size and orientation of
objects in them. They require their input images
already be segmented into closed contours corre-
sponding to objects in the images. Das and Riseman
[5], Huang and Kumar [14] suggest using the color
attributes in an image as a measurement of image
content in color image databases.Hampapur et al
[9] represent the characteristic properties of a video
sequence by the content of its image, audio and
motion components. Image content of a video
sequence is captured in a minimal set of key frames
which provide an adequate representation of the
sequence. Audio content of a video sequence is rep-
resented by points in the audio stream of the
sequence where a change in speaker, change
between speech and music, or change between
silence and sound occurs. The motion content of a
video sequence is represented by the total amount
of motion, uniformity of motion in the sequence



etc. Deng et al [6] represent the content of a video
sequence by the color, texture, shape, size, location
and motion of sub-objects in the sequence. Sub-
objects are segments identified by their spatio-tem-
poral segmentation algorithm which works by first
identifying color/texture coherent blobs and then
fitting an affine image flow motion model to each of
these blobs.

A video can be broken into “shots” (i.e., meaning-
full units of video information corresponding to
frame sequences between two stop camera opera-
tions or frame sequences with similar motion char-
acteristics). A “scene” is a collection of shots char-
acterized by a common event. A “clip” consists of
one or more scenes. The clip/scene/shot structure
defines a hierarchy of video information [29]

A shot can be considered as the foundamental
retrievable video entity. Video retrieval can be
based on features computed to shots. Various
approaches to shot detection have been proposed.
Most of them as reviewed in [18, 4]. Before a
video is stored, it has to be segmented into shots
and appropriate features are computed to the
extracted shots. These features can then be used for
video retrieval [29]

Video content in each shot is given in terms of
features of contained objects and of their motion.
Unlike approaches performing on compressed
MPEG video [17, 23]our video segmentation algo-
rithm works on uncompressed video by detecting
spatio-temporal changes in subsequent frames. In
addition, we deal with multiple objects and with
their interelationships.

In this paper, we present an approach to moving
image databases that uses motion segmentation and
an indexing scheme based on shape and trajectory.
We dev eloped a moving image database prototype
for sequences showing objects undergoing piece-
wise constant motion, e.g. image sequences show-
ing car racing and horse racing. Moving objects in
the dynamic scene are identified by our motion seg-
mentation algorithm. Pixels belonging to the same
independently moving object move with similar
velocities and hence share similar image flow [11].
By analyzing the structure of image flow, aggregat-
ing pixels having similar flows into blobs and track-
ing of these blobs over frames in the sequence, we
have a means of identifying independently moving
objects in the dynamic scene.In other words, our
image flow coherence model is piecewise constant
flow within each frame and maximal overlap across
successive frames. We represent the image content

of an image sequence by calculating some statistics,
such as shapes, trajectories, image flows of these
spatio-temporal coherent blobs and use these as
components of the feature vector representing the
dynamic scene in the image sequence. Then we
store the image sequence into our moving image
database using its feature vector as an index.
Finally, we support content-based image sequence
retrieval by first computing the feature vector asso-
ciated with the query image sequence and use that
as an index to the moving image database to
retrieve all image sequences that undergo similar
motion as the query sequence. Using different
statistics, we can modify the meaning of similarity.

2. Motion segmentation algorithm

We dev elop a simple, fast and robust motion seg-
mentation algorithm for images under piecewise
constant motion. Our algorithm works by first iden-
tifying strong edges, classifying them based on
image flow and then propagating the classified
labels to non-edge pixels. In essence, we are propa-
gating image flow from regions where flow estima-
tion is reliable to regions where flow estimation is
ill-conditioned. Furthermore, by first classifying
strong edges, our algorithm produces clear and
highly localized motion boundaries because we
only propagate image flow values within the bound-
ary of an object. Moreover, the underlying concept
is simple and intuitive as our algorithm is only
based on strong edge classification and smooth vari-
ation of flow values within the surface of the
objects. As a result, our algorithm runs quite
quickly.

In the following, we outline the steps involved in
our algorithm for the image frame pair in Fig 2.1.

Fig 2.1 continued...



Fig 2.1.

There are three major phases involved in our
motion segmentation algorithm.

Phase 1: Identification of image flow vectors for the
independently moving objects by Hough Transform

We identify N image flow vectors {(u1, v1) , .. ,
(uN , vN)} using Hough Transform. Borrowing idea
from Lucas and Kanade [20], we smooth image
flow constraints at a pixel with a Gaussian filter
over a  small neighborhood so that the image flow
equation (I xu + I yv + I t = 0 [12]) is applicable to a
small neighborhood of the image frames in the least
squares sense.

(2.1)
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where Exx = (I 2
x)(*) g the result of the convolution

of the square of the image derivative with a gaus-
sian andExy etc are respectively the results of simi-
lar convolutions. This can be shown to be the region
matching constraint where the region is defined by
the gaussian window and it generates a more accu-
rate flow field estimation Hence, flow field (û, v̂)
can be calculated using the pseudo-inverse matrix
as follows:

(2.2)
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Each estimated image flow (û, v̂) is inside a cloud
of uncertainty in the shape of an ellipse [26].The
probability of (̂u, v̂) is scattered along principal axes
of the elliptical cloud in a way proportional to
reciprocals of the square root of eigenvalues of the
covariance matrix. The principal axes of the ellipse
cloud lie along eigenvectors of the covariance

matrix
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. At each pixel, we vote into the

Hough space by plotting a straight line centered at
(û, v̂) with length and direction that of the major
axis of the cloud of uncertainty. After going

through every pixel in the frame pair , we findN
peaks in the Hough space (that is (u1, v1), .. ,
(uN , vN)) by iteratively detecting a global maxi-
mum and then removing votes that correspond to
the maximum just found [25].

Phase 2: Aggregating neighboring pixels having
similar flow into regions following a bottom-up
paradigm.

We detect strong edges (which correspond to
boundaries of objects in the dynamic scene [28]) by
a combination of methods including Canny edge
detection [2], heuristic edge contour tracing across
a pyramid of images which are produced by
smoothing an image with Gaussian filters of various
scales ( s) [1, 3, 19] and joining of contour end
points [7]. Afterwards, we classify the edges by
assigning a label to each edge pixel that best satis-
fies the flow constraint [16]. In particular, for every
edge pixel, we assign to it a class labelm (which
corresponds to flow vector (um, vm)) that minimizes
the following:

(2.3)
1≤i≤N
min ||I x ui + I yvi + I t ||

We go through the image first in a direction
orthogonal to the dominant flow vector direction
and then in the direction of dominant flow vector.
A dominant flow vector is the nonzero vector that
has the biggest norm in the set of flow vectors in
phase one. At each row/column, we assign to every
unclassified pixel between a pair of successive edge
pixels that have been assigned to the same class
label c if all classified pixels in between these edge
pixels have also been assigned the labelc.



We identify the unclassified connected regions
using a sequential labeling algorithm [11]. For each
unclassified connected region surrounded by a
boundary in which the majority of labels is assigned
the classc, we assign the labelc to the region.

Borrowing ideas from Susan and Jain [10], we
perform moving edge detection by running Canny
edge detection on temporal image derivative I t .
Afterwards, we perform motion based classification
of those temporal edge pixels which have not been
classified.

We identify the remaining unclassified connected
regions using the sequential labeling algorithm. For
each unclassified connected region, we assign to
ev ery pixel in the region a label that minimizes the
weighted sum of flow constraint equations of all
pixels inside the connected region.

Phase 3: Post-processing steps for reducing effects
caused by noise.

In this phase, we perform size and morphological
filtering [15] on the segmented image. These are
post processing steps for alleviating the effects
caused by noise and phenomena such as shadows,
specular reflections and uneven illumination that
violate the data conservation model in motion.
After performing size filtering on the segmented
image, it becomes:

After performing morphological filtering on the
segmented image, it becomes:

Finally, we create a flow field corresponding to the
segmented image.



3. Statistics used in feature vector for image
sequence

Statistics that we used for representation of image
content are:

1) Shapes of the independently moving objects.
These are represented by some moment measures
of the regions in the segmented images which are
invariant to translation, rotation and scaling [13].

2) Trajectories of the independently moving
objects. These are represented by the center of grav-
ity of the segmented regions over frames in the
video sequence.

3) Image flow of the independently moving objects.
(Image flow velocities are proportional to velocities
of objects in a dynamic scene.)

4) Orientations of the image flow vectors. We store
the angle between the line joining any two moving
regions and their relative velocities.

5) Normalized sizes of the independently moving
objects.

6) Time to collision measures amongst indepen-
dently moving objects. It is defined byatan2(d, v)
whered is the distance between the center of gravi-
ties of the two objects/regions andv is their relative
velocity projected on the line joining the center of
gravities of the two objects/regions. If there are
more than 2 moving objects, we store a time to col-
lision measure for every possible pair of moving
objects.

4. Experiments

In this section, we present the result of a typical
query in our moving image database prototype. The
moving image database prototype is implemented
using MediaMath [27].

In order to increase the number of items in the
database, we divide every sequence into shorter
subsequences and insert/query each subsequence
separately. For the query using the video sequence

pcampolr1.pgm to pcampolr4.pgm, which shows a
police car chasing a sports car (Fig. 4.1).

Using shapes, trajectories and image flow of objects
as a measurement of similarity, our database out-
puts:
MM>queryVDB(3,["pcampolr1.pgm","pcampolr2.pgm",
"pcampolr3.pgm","pcampolr4.pgm"],:closestK=15,
:saveDist="shape2.dat");
[["pcampol7.pgm","pcampol8.pgm","pcampol9.pgm",
"pcampol10.pgm"],

...
["camtru2.pgm","camtru3.pgm","camtru4.pgm",
"camtru5.pgm"],

...
["campol2.pgm","campol3.pgm","campol4.pgm",
"campol5.pgm"],

...

The most similar sequence ispcampol7.pgm, ..,
pcampol10.pgm. The distance between the feature
vector of the query sequence and that of this
sequence is 60.272 (Fig. 4.2).

The second most similar sequence iscamtr u2.pgm,
.., camtru5.pgm (ignoring siblings of pcam-
pol*.pgm, sibling sequences are subsequences that
are derived from the same sequences), which is the
8th closest sequence. The distance between the fea-
ture vector of the query sequence and that of this
sequence is 172.205 (Fig. 4.3).

In the following figure, we plot the Euclidean dis-
tance between the feature vector of the query
sequence and those of the 15 most similar
sequences sorted in ascending order of dissimilar-
ity. Note the existence of subsequences that are
derived from the same input sequence.
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query. We see a sharp transition from siblings
sequences to similar but non sibling sequences.

Using sizes of the moving objects as a measurement
of similarity with the same querypcampolr*.pgm as
before, our database outputs:
MM>queryVDB(3,["pcampolr1.pgm","pcampolr2.pgm",
"pcampolr3.pgm", "pcampolr4.pgm"],
:trajectoryFlag=nil,:shapeFlag=nil,:velocityFlag=nil,:sizeFlag=t,
:closestK=15,:saveDist="size2.dat");
[["pcampol3.pgm","pcampol4.pgm","pcampol5.pgm",
"pcampol6.pgm"],

...
["campol4.pgm","campol5.pgm","campol6.pgm","campol7.pgm"],

...
["rcampol5.pgm","rcampol6.pgm","rcampol7.pgm",
"rcampol8.pgm"]]

The most similar sequence ispcampol3.pgm, ..,
pcampol6.pgm. The distance between the feature
vector of the query sequence and that of of this
sequence is 0.0262 (Fig. 4.4).

The next most similar sequence iscampol4.pgm, ..,
campol7.pgm (ignoring the sequences that are sib-
lings of pcampol*.pgm), which is the 8th closest
sequence. The distance between the feature vector
of the query sequence and that of this sequence is
0.0351 (Fig. 4.5).

In the following, we plot the Euclidean distance
between the feature vector of the query sequence
and those of the 15 most similar sequences sorted in
ascending order of dissimilarity. Note the existence
of subsequences that are derived from the same
input sequence.
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5. Conclusion

We presented an approach to video databases that
supports query by example that is based on motion
segmentation and indexing based on trajectories,

sizes, shapes and image flow of the segmented
objects. We assume piecewise constant motion.

In future research, we will experiment affine
motion models, flow prediction and the use of effi-
cient database organization schemes like multidi-
mensional R-trees [8].
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Fig. 4.1 Query sequence:pcampolr1.pgm to pcampolr4.pgm

Fig. 4.2: Most similar retrieved sequence:pcampol7.pgm, .., pcampol10.pgm (Shape-Trajectory)

Fig. 4.3: Second most similar retrieved sequence:camtr u2.pgm, .., camtru5.pgm (Shape-Trajectory)

Fig. 4.4: Most similar retrieved sequence:pcampol3.pgm, .., pcampol6.pgm (Sizes)

Fig. 4.5: Second most similar retrieved sequence:campol4.pgm, .., campol7.pgm (Sizes)
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