
Key Frame Extraction and Indexing for Multimedia Databases

 Mohamed Ahmed�� Ahmed Karmouch� Suhayya Abu-Hakima��

���������School of Information Technology & ���AmikaNow! Corporation
 Engineering (SITE), IPF, Building M-50, Ottawa,
University of Ottawa, 161 Louis-Pasteur, ON, Canada, K1A 0R6
 Ottawa, ON, Canada, K1N 6N5 E-Mail: suhayya@amikanow.com
E-Mail: mahmed@sol.genie.uottawa.ca ,
 karmouch@elg.uottawa.ca

Abstract

The need for video processing tools has emerged in
recent years. The main problem of video analysis is that
it is a notoriously weak-structured problem. There is no
fixed video style that we could use to parse directly.
Moreover, there are many media formats and standards
nowadays. Thus, in this paper, we introduce a new
system to analyze and process different media file
formats in an efficient and consistent manner. In
addition to the different normal media browsing
operations, the system implements three different video
cut detection mechanisms. These three mechanisms are
based upon the color histogram content summarization.
One of these algorithms is based on the HSV color
space. The other two algorithms are based on the RGB
color space. A detailed algorithm will be depicted
along with its approach to achieve quick performance
although it tries to solve common problems for video
cut detection. These problems are the detection of false
cuts and missing true cuts. Then, a comparative study
will be provided between the different mechanisms to
measure their performance and reliability in different
configuration environments. This work is part of the
Mobile Agents Alliance project among Ottawa
university, National Research Council (NRC) and Mitel
Corporation in Canada.

1. Introduction

In the past decade, there has been significant work done
in the area of image analysis and recognition so that we
could partition a video source into separate segments.
This process could be used to index the video within the
multimedia databases and thus we could query and
navigate through the database. Following are some of
the algorithms used to measure the differences among

consecutive frames. Pixels-Pair wise comparison [2] is
a simple way to detect a quantitative change between a
pair of images by comparing the corresponding pixels
in the two frames to determine how many pixels have
changed. The total percentage of the pixels changed is
evaluated and if this percentage exceeds some preset
threshold, we decide that a frame change has been
detected. Many color space systems could be used for
the comparison such as: RGB, HVC, HSV, YIQ or
L*u*v. The advantage of this method is its simplicity.
However, its disadvantages exceed the advantage. One
disadvantage is that it has a large processing overhead
to compare all consecutive frames. Also, it does not
conclude if large objects moved within the shot before
terminating the continuous shot.
The Spatial, Temporal Skips [2] (Histogram Analysis)
[2, 3, 4] methods benefit from the redundant
characteristic of the video frames either in the spatial
dimension or the temporal dimension. The use of color
histograms has been verified to be more robust against
objects and camera movements within the same shot.
Moreover, the very near video frames are similar except
for the cut frames. We could compare temporally every
defined number of frames instead of all the consecutive
frames and/or spatially not all the pixels within the
frames. Thus, we could save great processing time and
resources during the analysis. We could use the color
histogram distributions of the frames to make the
comparison. The histogram comparison algorithm is
less sensitive to object motion than the pixels-pair wise
comparison algorithm. Figure 1 shows a histogram
distribution function. There are many histogram
difference measures that could be used to detect a shot
cut.

For example:

1) Difference = Σ | Hi(j) – Hi+1 (j) |
for j = 1 To N

Where, Hi(j) is the histogram for color j in Frame i,
 N = Number of used colors

2) Difference = Σ (| Hi(j) – Hi+1 (j) |
2 / Hi+1 (j))

for j = 1 To N
 Where, Hi(j) is the histogram for color j in Frame i,

 N = Number of used colors

 Figure 1. Color Histogram Function

Using a preset threshold, we could discover the
existence of a frame change and thus the shot cut
operation is detected. N. Hirzalla [1] has described a
new detailed design of a key frame detection algorithm
using the HVC color space. First, for every two
consecutive frames, the system converts the original
RBG coloring space into the equivalent HVC
Histogram coloring representation because the HVC
space mirrors more the human color perception. The
system uses the Hue histogram distribution for
performing the comparison instead of the intensity
distribution to reduce, to some extent, the variations in
intensity values due to light changes and flashes.
G. Pass et al. [5] proposed a histogram refinement
algorithm using color coherence vectors based on local
spatial coherence. W. Wolf [6] provides an algorithm to
detect the key frames in MPEG video file format using
optical flow motion analysis. I. Sethi et al. in [7] use a
similarity metric to measure the similarity through both
the hue and saturation components of the HSI color
space between two images. G. Pass et al. [8] define a
notion of Joint Histograms. They use many local
features in comparison including color, edge density,
texture, gradient magnitude and the rank of the pixels.

2. MediABS System description

A prototype system called “MediABS”, was
implemented addressing multi video format browsing
and processing. The system tries to discover the
different cut changes within the video file. The system
runs on Microsoft-Windows NT and Windows95
environments. The current functions and capabilities of
the system are as follows:

À Media Segment:

-Play, Pause, Resume, Stop, Repeat and Audio
 Volume Control

À Media Speed Adjustment
À Sound on/off
À Video Frames Random Access:
 -GoTo, Next, Previous, Begin, Middle, End,
 Skip and Scroll
À Verifying the Input Media Format
À Specified Frames regions Extraction and Analysis
À Temporal, Spatial skip - Defaults: 5 frames, 5

pixels respectively
À Frames save Formats: JPG, BMP : Color, Grey-

scale
 -Each compressed frame size is about only
 4KB
À Frames Analysis:

- Hue Histogram Difference ratio
- 6 Most significant RGB bits Intensity

Difference
- 6 Most significant RGB bits with the use

of Blocks Intensity Difference
À Exporting Video analysis configurations and

results to a SpreadSheet file

The main window of the system is shown in figure 2.
Three cut detection algorithms were implemented in the
system. They are the HSV-Hue Histogram Difference,
the 6 Most Significant RGB Bits Intensity Difference
and the 6 Most significant RGB bits with the use of
Blocks Intensity Difference. We could define a certain
video segment to be analyzed. Using the temporal and
spatial information redundancy within the video, we
could improve the performance without sacrificing the
accuracy of the algorithm results.

Figure 2. MediABS Main Window

3. Media Unification Pre-Processing Stage

The system uses a media unification phase for different
media standards before analyzing the video file. These
standards are the Audio Video Interleaved (AVI),

Apple Quick Time for Windows (QTW) and Motion
Picture Experts Group (MPEG). The use of this process
allows us to simplify the media analysis management
afterwards because we don’t need to worry about the
different characteristics of each format for processing.
Irrespective of the information coding in these formats,
we use the same processing modules for them. Thus,
we could state that this simplifies managing and
analyzing the video in all cases. The different
components of this pre-processing stage are illustrated
in figure 3.

The components of this stage are:
♦ Media Format Handler Extension: This component

could be regarded as the media driver of each
media format. It handles the special format coding
of the corresponding format representation. This
layer could be extended to handle other media
devices (e.g. CD-ROM, CD-I, the new DVD
standard, …etc). Streaming media could be
processed in the same manner as well without re-
doing the already implemented processing
mechanisms of the next stages.

♦ Media Formats Unification Module: This module
is used to unify the environment and the operations
that will be used for the media processing in the
next stage. For example, some of the functions of
this module are controlling the speed of video
display, enabling or disabling the audio component
of the video, adjusting the audio volume level, the
ability to specify certain video segments to analyze
and browse, …etc.

Figure 3. Media Unification Pre-Processing
 Stage

The output of this media pre-processing stage is seen as
a Media Unified Format (MUF) content that will be
used in further media handling operations. The use of
this format will reduce the complexity of handling
different input standards since we don’t need the special
characteristics of these formats in the current
implemented media processing algorithms. Thus, for
example, we don’t have to worry about the format to

access certain frames within the video with certain
temporal skip though we know that the coding of the
information is very much different between MPEG and
AVI video formats for instance.

4. Video Change Cut Detection Stage

For this process, the system extracts the consecutive
frames needed to detect the camera cut events. Thus,
the representing frames are grabbed and stored in the
computer’s hard disk. The system could define various
configurations for the extracted frames. They could be
color or gray frames, different image qualities and
different image formats (either JPG or BMP). In
addition, there is a temporal skip parameter, so that we
don’t need to extract and analyze all the consecutive
frames.
For cut detection, the system implements a spatial skip
parameter as well to improve the performance without
sacrificing the accuracy of the detection to benefit from
the redundant information within the frames. The
system, as said before, implements three cut detection
algorithms. In the following sections, the description of
each algorithm will be depicted.

4.1 The Hue Histogram Difference Algorithm

To realize this algorithm, the system first converts each
compared pixel of the frames, taking the defined spatial
skip parameter into consideration, from RGB color
space into HSV Color space. The Hue [1] component
histogram for each frame is evaluated. Then, the system
uses this 2 Hue histogram difference to discriminate
between every two consecutive frames, taking the
defined temporal skip parameter into consideration. The
following formula is used:

Hue Difference = ½ * Σ | H2(i) – H1(i) | / Σ H1(i)
for i = 1 To N

Where, H1(i) is the Hue Histogram distribution for
frame M,
H2(i) is the Hue Histogram distribution for
frame (M + Temporal Skip),
N = the possible Hue values

Then, if this Hue Difference exceeds some defined
threshold, the 2 frames are said to represent a camera
cut detected.

4.2 The 6 Most Significant RGB bits Intensity
Difference Algorithm

In this algorithm, the system makes use of the 24 bit
RGB color space components of each compared pixels
(each component has 8 bits representation) directly.

However, to speed the performance considerably, the
system exploits only the 2 most Significant bits [2] of
each color (using a masking operation) which means
actually that we define only 64 ranges of color degrees
for the entire RGB color space. Then, similar steps as in
section 4.1 are used to detect the camera cut operation.
A snapshot of a system result using this algorithm is
shown in figure 4.

Figure 4. MediABS 6 MSBs Histogram results

4.3 The 6 Most significant RGB bits with the
use of Blocks Intensity Difference

Following the results of the previous algorithm (The 6
Most Significant RGB bits Intensity Difference
Algorithm), the system gave poor results in few cases.
One problem was that the previous algorithm makes use
only of the global color distribution information. This
results in the system not discovering cut detection even
there is a cut detection in the compared frames. The two
examples, shown in figure 5, illustrate this. The
problem being that the previous algorithm ignores the
locality information of the color. That means that the 2
consecutive 6 MSBs color histograms are similar
despite the fact that the actual spatial distributions of
the colors are not the same. Thus, the algorithm was
extended to suit these circumstances.
We make use of partitioning each frame into a number
of disjoint blocks. This allows us to make use of the
locality information of the histogram distribution to a
great extent. The system evaluates every corresponding
two block histogram difference between the compared
frames. Thus, the solution to the previously described
problem is shown in figure 6.
There is another issue that was discovered while
experimenting. It is the false detection problem. It
occurs here mainly because of the use of the temporal
skip for processing. Thus, it was realized that if this
temporal skip is significantly high along with a quick

change in the same continuous shot due to object
movement or camera operation such as tilting, panning

Figure 5. Wrong Frames Unchange Decision !

Figure 6. Correct Frames Change Decision

or zooming, the algorithm will recognize the frames as
significantly different despite this not being true. Thus,
an additional step is advised. After the first cut
detection process, we need to analyze these specific
changed frames more comprehensively [2] provided
that the temporal skip is already greater than one. We
do that in order to compensate for the speed of possible
object and camera movements taking into consideration
that the use of blocks difference magnifies the effect of
any object or camera movements. Therefore, we re-
analyze these region frames but with temporal skip
equal to one. Hence, the system first needs to extract all
the frames included in the current analyzed region. The
algorithm thus became more accurate in refusing false
cuts obtained from the first process while maintaining
true camera cut change accuracy.
Now, the modified algorithm could be described as
follows for every two consecutive frames, taking the
temporal skip into consideration (i.e. separated by (the
temporal skip – 1) number of frames):

Total_Blocks_Difference = 0 ;
For BlockX = 0 To (H_Number_of_Blocks – 1)
For BlockY = 0 To (V_Number_of_Blocks – 1)
// where,H_Number_of_Blocks is the Horizontal
//Number of Blocks
// and V_Number_of_Blocks is the Vertical

//Number of Blocks
{
Histogram1(j) = 0 ; for j = 0 to 63
Histogram2(j) = 0 ; for j = 0 to 63
For Row = BlockX * (Frame_Height /
H_Number_of_Blocks) To (BlockX + 1) *
(Frame_Height / H_Number_of_Blocks) Step
Spatial_Skip
For Column = BlockY * (Frame_Width /
V_Number_of_Blocks) To (BlockY + 1) *
(Frame_Width / V_Number_of_Blocks) Step
Spatial_Skip
{
Frame1_Pixel_Color(Row,Column)=
Six_MSB(R1(Row,Column),G1(Row,Column),
B1(Row,Column)) ;
Frame2_Pixel_Color(Row,Column)=
Six_MSB(R2(Row,Column),G2(Row,Column),
B2(Row,Column)) ;
// where, Six_MSB(R, G, B) Function is used to get
//the 6 MSB equivalent of the R, G, B
//input parameters (i.e. return a value between 0
//and 63)
Histogram1(Pixel_Color)=
Histogram1(Frame1_Pixel_Color(Row,Column)) + 1 ;
Histogram2(Pixel_Color)=
Histogram2(Frame2_Pixel_Color(Row,Column)) + 1 ;
}
Block_Difference = ½ * Σ | Histogram2(i) –
Histogram1(i) | / Σ Histogram1(i) ; for i = 0 to 63
Total_Blocks_Difference=Total_Blocks_Difference +
Block_Difference ;
}
Final_Difference_Avg = Total_Block_Difference /
(H_Number_of_Blocks * V_Number_of_Blocks) ;
IF Final_Difference_Avg > Threshold AND
Temporal_Skip >1 THEN
{
Temporal_Skip = 1 ;
Extract all the current region included frames ;
Repeat the process again using Temporal_Skip =1 ;
// i.e. re-analyze again
}
IF Final_Difference_Avg > Threshold AND
Temporal_Skip = 1 THEN
{
Decision of Cut Detection ;
Exit ;
}
Else
{
Decision of NO Cut Detection ;
Exit ;
}

5. Testing Evaluation

Various testing experiments have been undertaken. We
used different file formats and these files have different
testing conditions such as dark shots and camera
operations. We tested the three cut detection algorithms
to compare their behavior with the different file formats
and the different testing conditions. In addition, the
testing uses some other constant testing conditions for
the different algorithms such as using color, 24
bits/pixel, same quality compressed extracted frames
formats, …etc.
In addition, for the modified algorithm (i.e. the 6 Most
significant RGB bits with the use of Blocks Intensity
Difference), we repeat the testing with a different
number of blocks in each case to study the effect of this
parameter on the efficiency of this algorithm.
To evaluate the different algorithms, we used two well-
known accuracy measures. They are the Recall and
Precision measures. They are defined as:

The testing makes use of initial temporal skip and
spatial skip values of 5 and 5 respectively. This resulted
clearly in very quick performance as expected. The
summary of the results, using 7 different video files, is
as shown in table 1.
The results show a better accuracy for the 6 Most
Significant RGB bits with the use of Blocks Intensity
Difference algorithm over the other two algorithms for
detecting camera cut changes. The correct cuts
detection has increased significantly.

Table 1. Results summary of using 7 different formats
files

The recall measure is improved because of the
significant decrease of the missed true cuts. This occurs
because of the use of disjoint blocks as shown
previously in figure 6. The precision measure is
improved mainly because of the increase in the correct
cut detected in addition to reducing the false cuts
generated comparing to the Hue Histogram Difference
algorithm.

Another issue is the number of the used blocks. The
results show the consistent behavior of the algorithm
with respect to the number of blocks. Nevertheless, the
25 number of blocks (5 Horizontally * 5 Vertically) has
shown slightly better overall results relative to the other
numbers. However, we need to mention here that we
should not increase the number of blocks very much.
That is first because it will result in slow performance
of the cut detection and in addition the algorithm will
tend to simulate the Pixel-Pair wise histogram
algorithm. Hence, this will decrease the efficiency in
the case of quick camera operation or large object
movement.

6. Conclusion

The work in video processing and analysis is very
interesting and important in spite of its complexity. In
this paper, we described a new system, MediABS, to
browse, process and analyze media files. The system
deals with three different media formats in consistent
and similar processes. The system uses a pre-processing
stage to unify the view of the management and
processing of the video files irrespective of the input
file format. The browsing and processing mechanisms
of the different files do not change from one format to
another. This eases the handling of the video files to a
great extent. This architecture could be used in future to
support other media formats such as streaming media.
The system implements three different video processing
algorithms for camera cut detection. We described a
better algorithm to detect camera cut in different
conditions. The algorithm partitions the video frames
into disjoint blocks to diminish the missed true cuts
problem. Also, the problem of false cut detection is
reduced through the comprehensive analysis of the
included frames in the case of cut detection provided
that the temporal skip was not equal to one. The
algorithm makes use of temporal and spatial skips to
speed the performance significantly.
The algorithm has shown promising results in different
conditions relative to the other two algorithms. In
future, the system could be extended to cover the
detection of different camera operations such as
panning, tilting and zooming. In addition, the system
will be used to provide a key framing service remotely
for users over the Internet.

References

[1] N. Hirzalla “Media Processing and Retrieval
 Model for Multimedia Documents,” PhD
 Thesis,Ottawa University, Jan. 1997.

[2] H. Zhang, A. Kankanhalli and S. Smoliar

 “Automatic Partitioning of Full-Motion Video,”
Multimedia Systems, Vol. 1, No. 1, pp. 10-28,

 Apr. 1993.

[3] M. Swain and D. Ballard “Color Indexing,”
International Journal of Computer Vision, Vol.

 7, No. 1, pp. 11-32, 1991.

[4] J. Boreczky and L. Rowe “A Comparison of
 Video Shot Boundary Detection Techniques,”

Journal of Electronic Imaging, Vol. 5, No. 2,
 pp. 122-128, 1996.

[5] G. Pass and R. Zabih “Histogram Refinement
 for Content-Based Image Retrieval”, In IEEE
 Workshop on Applications of Computer Vision,
 pp. 96-102, Dec. 1996.

[6] W. Wolf, "Key Frame Selection by Motion
 Analysis," in Proceedings of ICASSP ’96.

[7] I. Sethi, I. Coman, B. Day, et al., "Color-WISE:
 A System for Image Similarity Retrieval Using
 Color," Proc. of SPIE, Storage and Retrieval
 for Image and Video Databases VI, Vol. 3312,
 pp. 140-149, Jan. 1998.

[8] G. Pass and R. Zabih “Comparing Images Using
 Joint Histograms”, ACM Journal of Multimedia
 Systems, 1998.

	en-tete: Vision Interface '99, Trois-Rivières, Canada, 19-21 May
	page1: 506
	page2: 507
	page3: 508
	page4: 509
	page5: 510
	page6: 511

