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Abstract

The computation of image motion for the purposes of

determining egomotion is a challenging task as im-

age motion includes discontinuities and multiple values

mostly due to scene geometry, surface translucency and

various photometric e�ects such as surface reectance.

We present algorithms for computing multiple image

motions arising from occlusion and translucency which

are capable of extracting the information-content of oc-

clusion boundaries and distinguish between those and

additive translucency phenomena. Sets of experimen-

tal results obtained on synthetic images are presented.

These algorithms are based on recent theoretical results

on occlusion and translucency in Fourier space.

1 Introduction

The importance of motion in image processing cannot
be understated: in particular, approximations to image
motion may be used to estimate 3D scene properties
and motion parameters from a moving visual sensor,
to perform motion segmentation, to compute the focus
of expansion and time-to-collision, to perform motion-
compensated image encoding, to compute stereo dis-
parity and to measure biological parameters in medical
imagery [1]

Based on recent theoretical developments in discon-
tinuous motion, we devise multiple motion algorithms.
We consider 1D and 2D signals, adopt a constant model
of velocity and use a robust statistical procedure to
extract multiple motions from local frequency spectra.
The motion information provided by the algorithms in-
cludes single velocity, multiple (2) velocities, assessment
of transparency versus occlusion, and upon occlusion
events, the orientation of the occlusion boundary and
the identi�cation of the occluding signal.

1.1 Literature Survey

Many phenomena may cause multiple image motions.
Occlusions, translucencies and various photometric ef-
fects such as specularities are among probable causes.
In addition, occlusions contain valuable information
concerning the geometry of the scene and may be used
to decouple optical ow �elds into their rotational and
translational components, identify depth discontinu-
ities, segment the scene with respect to motion and so
on.

Computing multiple motions is a complex and rarely
undertaken task. Indeed, most of the existing optical
ow methods that have appeared in the literature make
an explicit use of the optical ow constraint equation

rITv � It = 0; (1.1)

where rI = (Ix; Iy)
T is the spatial intensity gradient

and v = (u; v)T is the image velocity. At motion dis-
continuities, where the information content of a signal
mostly resides, the use of (1.1) becomes problematic as
the single motion hypothesis is violated. Area-based
and feature-based correlation techniques are equally
sensitive to occlusion as local image structures and
features appear and disappear from one image to the
next. To further complicate matters, regularization
techniques which impose a degree of continuity to op-
tical ow are also clearly inadequate over occlusion
boundaries. However, in the more recent research in
optical ow, the non-linear, discontinuous and multiple-
valued nature of image motion in the coordinates of the
image plane has been recognized [1].

In order to allow multiple motion events in optical
ow estimation processes, a number of strategies have
been devised, such as strong intensity gradients acting
as inhibitors of ow coherence [8] and robust estimators
designed to capture dominant motions [3]. Other tech-
niques such as clustering [9], superposed motion lay-
ers and distributions [10], parametric models of motion
with discontinuous functions [4] and mixtures of prob-
ability densities [7] have appeared.



Our approach emanates from recent theoretical re-
sults [2] describing the Fourier structure of occlusion
and translucency phenomena for constant and linear
models of optical ow.

1.2 Models of Optical Flow

The optical ow function may be expressed as an order
n function of the image coordinates. Generally, we may
write the Taylor series expansion for a ith velocity as:

vi(x; t) =

pX
j=0

qX
k=0

rX
l=0

@j+k+lvi
j!k!l!@xj@yk@tl

xjyktl; (1.2)

where p + q + r � n. For instance, the �rst-order ex-

pansion is written as v
(1)
i (x; t) = Jix+ ait, where

Ji =

�
ai1 ai2
bi1 bi2

�

is the Jacobi matrix and aTi = �(ai3; bi3) is transla-
tion1. We adopt in what follows a constant model of
optical ow2.

2 Structure of Occlusion

We proceed to describe the structure of occlusion events
in the frequency domain for 1D and 2D signals com-
posed of an arbitrary number of distinct frequencies.

Let I1(x) and I2(x) be 1D functions satisfying
Dirichlet conditions such that they may be expressed
as complex exponential series expansions:

I1(x) =

1X
n=�1

c1ne
ink1x

I2(x) =

1X
n=�1

c2ne
ink2x; (2.3)

where n is integer, c1n and c2n are complex coe�cients
and k1 and k2 are the fundamental frequencies of both
signals.

Let I1(x; t) = I1(v
(0)
1 (x; t)) and I2(x; t) =

I2(v
(0)
2 (x; t)). The frequency spectrum of the occlusion

is:

Î(k; !) = �

1X
n=i�1

c1n�(k � nk1; ! + nk1a1)

+ (1� �)
1X

n=�1

c2n�(k � nk2; ! + nk2a2)

1We use a negative translational rate without loss of generality
and for mere mathematical convenience.

2The constant model may be simply de�ned as a linear model

with Ji = I, yielding v
(0)
i

(x; t) = x� ait.

+ i

1X
n=�1

�
c2n�(ka1 + ! � nk2�a)

(k � nk2)

� c1n�(ka1 + !)

(k � nk1)
�
; (2.4)

where �a = a1 � a2.
In the 1D case, equation (2.4) reveals that the fre-

quency spectra of both signals are preserved to within
scaling factors. In addition, the Dirac delta functions
�(ka1+!) and �(ka1+!�k2�a) constitute linear spec-
tra, intersecting the frequencies of both the occluding
and occluded signals, and are oriented in the direction
of the constraint line pertaining to the occluding signal.
Figure 2.1 shows a typical example with 1D translating
sinusoids in an occlusion scene.

In the 2D case, equation (2.7) shows similarities with
(2.4). The frequency spectra are planar and preserved
to within scaling factors under occlusion and the distor-
tions cast by the occlusion boundary �t oriented planes
parallel to the plane containing the spectrum of the oc-
cluding signal.

Let I1(x) and I2(x) be 2D functions satisfying
Dirichlet conditions such that they may be expressed
as complex exponential series expansions:

I1(x) =

~1X
n=� ~1

c1ne
ixTNk1

I2(x) =

~1X
n=� ~1

c2ne
ixTNk2 ; (2.5)

where n = (nx; ny)
T and N = nT I are integers, x

are spatial coordinates, k1 = (k1x; k1y)
T and k2 =

(k2x; k2y)
T are fundamental frequencies and c1n and c2n

are complex coe�cients. Let I1(x; t) = I1(v
(0)
1 (x; t)),

I2(x; t) = I2(v
(0)
2 (x; t)) and the occluding boundary be

locally represented by:

U(x) =

�
1 if xTn1 � 0
0 otherwise,

(2.6)

where n1 is a vector normal to the occluding boundary
at x. The frequency spectrum of the occlusion is:

Î(k; !) =

�
~1X

n=� ~1

c1n�(k�Nk1; ! + aT1Nk1)

+(1� �)
~1X

n=� ~1

c2n�(k�Nk2; ! + aT2Nk2)

�i
~1;X

n=�~1

�
c1n�((k�Nk1)

Tn?1 ;k
T a1 + !)

(k�Nk1)Tn1



+
c2n�((k�Nk2)

Tn?1 ;k
T a1 + ! ��aTNk2)

(k�Nk2)Tn1

�
(2.7)

where �a = a1 � a2. Equation (2.7) is a generaliza-
tion of equation (2.4) from 1D to 2D signals and its
geometric interpretation is similar. For instance, fre-
quencies (Nk1;�aT1Nk1) and (Nk2;�aT2Nk2) �t the
constraint planes of the occluding and occluded signals,
de�ned as kT1 a1 + ! = 0 and kTa2 + ! = 0. In the
distortion term, the Dirac � function with arguments
(k � Nk2)

Tn?1 and kT a1 + ! � �aTNk2 represent a
set of lines parallel to the constraint plane of the oc-
cluding signal kTa1+! = 0 and, for every discrete fre-
quency Nk1 and Nk2 exhibited by both signals, there
is a frequency spectrum �tting the lines given by the
intersection of planes kT a1 + ! � �aTNk2 = 0 and
(k �Nk1)

Tn?1 = 0. The magnitudes of these spectra
are determined by their corresponding scaling functions
c1n[(k�Nk1)

Tn1 ]
�1 and c2n[(k�Nk2)

Tn1 ]
�1.

3 Estimation of Multiple Image

Motion

Equations (2.4) and (2.7) provide a model of the Fourier
spectrum at an occlusion boundary. We devise sev-
eral algorithms operating on local Fourier transforms
which are capable of extracting multiple velocity mea-
surements along with the information-content of occlu-
sion boundaries.

3.1 1D Algorithm

Given a frequency measurement (k̂j ; !̂j), its cor-
responding velocity estimate is given by v̂i =
(�!̂j=k̂j ; 1)T . In optimal conditions, the non-zero spec-
trum of a purely translating image signal should be en-
tirely consistent with its velocity. That is to say, every
frequency measurement (k̂j ; !̂j) should be consistent
with vi, the true signal velocity. However, owing to
multiple factors such as acquisition noise, signal defor-
mations and deviations from the locally constant veloc-
ity model, it may be that some variablility in the degree
of agreement between measurements and the true ve-
locity exists.

In light of this, an error metric, corresponding to
the angular deviation between a measurement m̂j =

(k̂j ; !̂j) and an estimate of the ith velocity v̂i may be
de�ned as [7]

�(m̂j ; v̂i) = sin�1

 
m̂T

j v̂i

km̂jk2kv̂ik2

!
: (3.8)

i

k

kj

j

v

^

θ

Figure 3.2: The geometry of the angular error measure.
The line de�ned by k̂j = (k̂j ; !̂j)

T should be perpendicu-

lar to the line parallel to vi = (�!j=kj ; 1)T , as depicted
by vector k̂j = (kj ; !j)

T .

In addition, it is mathematically convenient to simplify
the error metric and use the sine of the angle as the
amount of deviation:

�(m̂j ; v̂i) =
m̂T

j v̂i

km̂jk2kv̂ik2 : (3.9)

Under the assumption that the angular error is nor-
mally distributed, we de�ne a mixture model of normal
distributions to account for multiple motions. Consider
G to be the set of measurements m̂j, j = 1; : : : ; n. The
probability density function for m̂j 2 G is represented
by the mixture of g normal distributions:

f(m̂j;  ) =

gX
i=1

�ifi(m̂j ; �); (3.10)

where fi(m̂j ; �) is a normal probability density func-
tion,  = (�1; : : : ; �g ;v1; : : : ;vg)

T is the vector of the
mixture parameters and � = (v1; : : : ;vg)

T is the vector
of normal distribution parameters. �i is the is the prob-
ability of m̂j to be from normal distribution fi. The �i
are mixture probabilities and thus must satisfy

gX
i=1

�i = 1 (3.11)

In addition, the mixture parameters � must satisfy the
likelihood equation

gX
i=1

nX
j=1

�ij@ ln fi(m̂j ;�)

@�
= 0 (3.12)

which yields the constraints

�i =
Pn

j=1
�ij
n

and vi =
Pn

j=1

�ijm̂
?

j

n�i
; (3.13)

where �ij is the posterior probability that m̂j belongs to

fi and m̂?j = (�!̂j=k̂j ; 1)T [7]. In this mixture model,



Figure 2.1: (from left to right): a) Gaussian-windowed 1D signal with sinusoidals acting as occluding and

occluded surfaces. The occluding signal has spatial frequency k1 =
2�
16 and velocity v1 = (1; 1). The occluded signal

has frequency k2 =
2�
8 and velocity v2 = (�1; 1). b) Fourier spectrum of a). c) Gaussian-windowed 2D signal with

sinusoidals acting as occluding and occluded surfaces. The occluding signal has spatial frequency k1 = ( 2�16 ;
2�
16 )

and velocity v1 = (1; 1; 1). The occluded signal has frequency k2 = ( 2�8 ;
2�
8 ) and velocity v2 = (�1;�1; 1). d)

Fourier spectrum of c).

we hypothesize homoscedasticity, that is to say, the nor-
mal distributions within the mixture share the same
standard deviation, which we consider as a constant.
We also use an outlier detection mechanism based on
Jepson and Black's model. We �rst pose the hypothesis
that outlying measurements are uniformly distributed
over the parameter space of the mixture, and thus we
use a constant measure for the outlier probability of
a measurement. We only update a mixture propor-
tion for those. Constraints m̂j at a predetermined dis-
tance from other distributions should be considered as
noisy measurements and not enter the velocity estima-
tion process. The constant probability of observing a
noisy measurement can be expressed as

1p
2��v

e
��2

2�2n ; (3.14)

from which we note that measurements at � standard
deviations from the means of the normal distributions
are considered as corrupted by noise.

Further, the magnitude of measurements m̂j are rel-
evant as the frequencies composing the distortion terms
are typically smaller in magnitude than the frequencies
of the signals from which they originate. In light of this,
we incorporate the magnitude as the strength of mea-
surements by replacing n, the number of measurements
by
Pn

j=0 �(m̂j), where � is a measure of the magnitude
of the local Fourier transform at m̂j.

With the hypothesis of homoscedasticity, constant
standard deviation and uniform distribution of noisy
measurements, we establish the iterative equations for
the Expectation-Maximization algorithm. The expec-
tation step is the computation of posterior probabilities

for the normal distributions, which we write as

�̂
(k)
ij =

�̂
(k)
i e

�1

2�2v

�2(m̂j ;v̂i)

Pg
t=1 �̂

(k)
t e

�1

2�2v

�2(m̂j ;v̂t)
+ �̂

(k)
0 e

��2

2�2n

(3.15)

for i = 1; : : : ; g and j = 1; : : : ; n and, for the uniform
distribution of noisy measurements, we write

�̂
(k)
0j =

�̂
(k)
0 e

��2

2�2vPg
t=1 �̂

(k)
t e

�1

2�2v

�2(m̂j ;v̂t)
+ �̂

(k)
0 e

��2

2�2n

(3.16)

for j = 1; : : : ; n. The equations for the maximization
step, in which the parameters of the distributions are
updated, are written as follows for the means

v̂
(k+1)
i =

Pn
j=1 �̂

(k)
ij �(m̂j)m̂

?

j

�̂
(k)
i

Pn
j=1 �(m̂j)

(3.17)

for i = 1; : : : ; g, and the mixture proportions are up-
dated as

�̂
(k+1)
i =

Pn
j=1 �(m̂j)�̂

(k)
ijPn

j=1 �(m̂j)
(3.18)

for i = 0; : : : ; g.
Figure 3.3a shows an example of observations ran-

domly chosen from a superpopulation composed of 2
angular normals and a uniform distribution. The mix-
ture parameters are  = (�1 = 0:4; �2 = 0:4; v1 =
1; v2 = �1)T for the normals and  = (�0 = 0:2) for
the uniform distribution. An EM algorithm with an-
gular error measure (3.9) was applied to this set of ob-
servations. After 15 iterations the algorithm converged
to �0 = 0:182, �1 = 0:411, �2 = 0:406, v1 = 1:017 and
v2 = �1:022. Figures 3.3b and c show observations for
which the �nal posterior probabilities �ij are above 0.95
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Figure 3.3: a (left): Mixture of two angular normals randomly generated with �0 = 0:20, �1 = 0:40, �2 = 0:40,
v1 = (1; 1), v2 = (�1; 1) and �v = 0:075 radians. b) (center): EM results for observations with �1j > 0:95
and c) (left): with �2j > 0:95. The algorithm converged to �0 = 0:182, �1 = 0:411, �2 = 0:406, v1 = (1:017; 1)
and v2 = (�1:022; 1) in 15 iterations. Measurements at a distance � = 2:5 standard deviations are considered as

outliers.

for i = 1; 2. Thresholding on the posterior probabilities
allows to associate the observations with the various
probability density functions composing the mixture.

In order to identify the spectra associated with oc-
cluding boundaries, we �rst �nd peak frequency mea-
surements for both signals. That is to say, we �nd
for signal t, the frequency m̂t such that �tk > �ik for
t 6= i and �(m̂t) is maximal and determine the strength
of measurements m̂j along the direction perpendicular
to the hypothesized occluding velocity at the peak fre-
quency of the hypothesized occluded signal. Therefore,
two tests are performed in order to verify which of both
hypotheses is the correct one.

To test for the signal corresponding to velocity vi as
occluding, the procedure is to �rst consider only those
measurements m̂j belonging to the uniform distribution
of the mixture: �0j > �ij , for i = 1; 2 and j = 1 : : : n,
as determined by the EM algorithm and the peak fre-
quency of the signal corresponding to velocity vt, where
t 6= i. We then proceed with the computation of the
strengths of measurements con�rming this hypothesis.

Among measurements belonging to the uniform
noise distribution, we compute their posterior proba-
bility of being part of the distortion spectra cast by the
hypothesized occlusion as:

�̂ij(m̂t; v̂i) =
e
�1

2�2v

�2((m̂j�m̂t);v̂i)

e
�1

2�2v

�2((m̂j�m̂t);v̂i)
+ e

��2

2�2n

: (3.19)

We also determine the posterior probabilities of the
measurements to be from the uniform noise distribu-

tion to the exclusion of the spectra of the occlusion as:

�̂0j(m̂t; v̂i) =
e
��2

2�2n

e
�1

2�2v

�2((m̂j�m̂t);v̂i)
+ e

��2

2�2n

: (3.20)

Mixture proportions may be obtained from these poste-
rior probabilities that assess the hypothesis under test.
These proportions are computed as:

�̂i(v̂i) =

Pn
j=1 �(m̂j)�̂ij(m̂t;vi)Pn

j=1 �(m̂j)
(3.21)

for i = 0; 1. Thus, if velocity v̂i is occluding, then the
strengths of measurements con�rming this hypothesis
outnumber those pertaining to its contrary and thus

�i(v̂i)

�0(v̂i)
>
�i(v̂t)

�0(v̂t)
: (3.22)

Hence, various hypothesis-testing methods may be ap-
plied to determine the image events giving rise to mul-
tiple velocities.

3.2 2D Algorithm

The algorithm for 2D signals is essentially similar to the
1D algorithm we described. The measurements m̂j =
(kxj ; kyj ; !j)

T and velocity estimates v̂i = (vx; vy; vt)
T

are used in the error metric (3.9) to deterimine the
posterior probabilities �ij , as is the case with the 1D
algorithms. However, the choice of velocity estimates
di�ers substantially. In the case of 2D signals, the ve-
locity estimates at each EM iteration must maximize



the numerator exponential of (3.15). In this case, we
follow the approach adopted by Jepson and Black [7],
and consider the square of the error metric (3.9) as
the equation for which the solutions yield velocity esti-
mates. We observe that �2(m̂j ; v̂i) may be written in
matrix form as

(mT
j vi)

2 = vTi Mjvi (3.23)

where Mj = m̂jm̂
T
j . By selecting the eigenvector cor-

responding to the minimum eigenvalue ofMj for vi, we
minimize (3.23). Since Mj is real and symmetric, its
eigenvalues are real and non-degenerate and the eigen-
vectors form an orthogonal basis in the space of mea-
surements. In light of these observations, we de�ne

�
(k+1)
i =

Pn
j=1 �

(k)
ij �(m̂j)MjPn

j=1 �(m̂j)
(3.24)

as the matrix from which the velocity estimate v
(k+1)
i

is to be obtained in the form of the eigenvector e
(k+1)
i

corresponding to the minimum eigenvalue e
(k+1)
i of �i.

The minimum eigenvalue holds information about the
velocity estimate obtained from its corresponding eigen-
vector. A zero value for ei indicates that the velocity
measurement is normal, whereas a non zero value in-
dicates a full velocity measurement [5]. To see this,
consider a set of observations consisting of collinear
measurements, consistent with a normal velocity. It
is observed that in such circumstances, the lines of ma-
trix �i are linearly dependent, leading to a minimum
eigenvalue of value zero. Thus, the �nal eigenvalues
ei contain information on the nature of the measured
velocities that is very relevant in most uses of image
velocity.

Under the hypothesis of a straight-edged occlusion
boundary, its normal may be estimated from the fre-
quency structure of the occlusion. To perform this es-
timation, the algorithm must recover the orientation of
the spectrum cast by the occlusion about the maximum
frequency of the occluded signal, within a plane parallel
to that of the occluding signal. To perform this estima-
tion, it is necessary to include an EM iteration which
converges to this linear orientation within the speci�ed
constraint plane.

We consider only those measurements which are
consistent with the plane containing the peak frequency
m̂t of the occluded signal and perpendicular to the oc-
cluding velocity vi, that is to say, we �nd m̂j�m̂t such
that �ik > �tk, for t 6= k. We proceed with the computa-
tion of posterior probabilities given an initial estimate
n̂(0) of the orientation of the linear spectra cast by the

occlusion:

�̂
(k)
ij =

�̂
(k)
i e

�1

2�2v

�2((m̂j�m̂t);n̂)

Pg
t=1 �̂

(k)
t e

�1

2�2v

�2((m̂j�m̂t);n̂)
+ �̂

(k)
0 e

��2

2�2n

:

(3.25)

�̂
(k)
0j =

�̂
(k)
0 e

��2

2�2vPg
t=1 �̂

(k)
t e

�1

2�2v

�2((m̂j�m̂t);n̂)
+ �̂

(k)
0 e

��2

2�2n

(3.26)

where � is the error measure (3.8). The estimate of the
spectral orientation and the mixture proportions are
updated as:

n̂(k+1) =

Pn
j=1 �̂

(k)
ij �(m̂j)(m̂j � m̂t)

�̂
(k)
i

Pn
j=1 �(m̂j)

(3.27)

�̂
(k+1)
i =

Pn
j=1 �̂

(k)
ij �(m̂j)Pn

j=1 �(m̂j)
(3.28)

4 Experiments

We performed numerical experiments on synthetic si-
nusoidal imagery composed of four 1D occlusion scenes
and one 2D occlusion sequence, as described by Figure
4.4. The images used in these experiments are virtually
free from noise. Local frequency measurements are ob-
tained for an image location by computing a local Fast
Fourier Transform within a region of side size 32. We
observed that 30 iterations were su�cient for the EM al-
gorithm to converge. The initial estimates for velocities
and mixture proportions may be chosen randomly, but
we prefer to have initial velocity estimates set as apart
as possible to avoid convergence of both estimates to
a single peak. When the EM iterations begin, we set
�v to 0.2618 radians, or 15 degrees. At each step, we
decrease �v to obtain a �nal value of 0.01745, or 1 de-
gree. It is observed that a larger value for the standard
deviation during the �rst iterations brings the initial
velocity estimates in the neighborhood of the true pa-
rameters while a smaller value for the last iterations
improves the accuracy of the �nal estimates. A value
of 2.5 for � and 1.0 for �n are chosen for the uniform
distributions. It was experimentally determined that
in order to assess the presence of multiple motions, the
mixture probabilities must satisfy

�i
�0

> �1; (4.29)

where �1 = 0:3. In addition, to assess velocity v̂i as
occluding, we required that���� �i(v̂i)�0(v̂i)

� �i(v̂t)

�0(v̂t)

���� > �2; (4.30)



Figure 4.4: Synthetic imagery and results with k1 and v1 occluding. (top to bottom): 1D imagery a) k1 =
2�
16 ,

k2 = 2�
8 , v1 = (1; 1) and v2 = (�1; 1). b) k1 = 2�

16 , k2 = 2�
8 , v1 = (1; 1) and v2 = (0; 1). c) k1 = k2 = 2�

16 ,

v1 = (0:5; 1) and v2 = (�1; 1). d) k1 = k2 =
2�
16 , v1 = (0:5; 1) and v2 = (�0:75; 1). e) 2D imagery k1 = ( 2�16 ;

2�
16 ),

k2 = ( 2�8 ;
2�
8 ) v1 = (1; 1; 1) and v2 = (�1;�1; 1). (left to right): a) Synthetic image. b) Optical ow. c)

Multiple velocities. d) Occluding velocities. e) Occluded velocities.

where �2 = 1:0 � 10�3. Figure 4.4 shows the results
obtained on the occlusion scenes. These optical ow
�elds are virtually free from error, due to the perfect

nature of the synthetic imagery. However, we have ob-
served that the degree to which these algorithms are
capable of identifying multiple velocities that are rela-



tively similar in their orientation is not very satisfying.
The velocities must be at least 15 to 20 degrees apart in
orientation for the algorithms to yield a positive assess-
ment of multiple velocities. Issues such as the values
of the various standard deviations for the mixture and
the orientations of the initial estimates have a de�nite
inuence on this phenomenon. One potential solution
to obtain better orientational resolution would be to
perform several EM iterations in parallel with di�erent
values for their initial estimates and then proceed with
an analysis of the �nal convergence values.

5 Conclusion

The nature of discontinuous image motions in Fourier
space has long been unclear. The algorithms pro-
posed in this contribution are based on a �rm theoret-
ical framework which describes the coherent behavior
of occlusion events in Fourier space. However, open
questions abound: Theoretically, the structure of pla-
nar motion, quadratic in the imaging plane, remains
to be established in Fourier space. In addition, the
algorithms proposed herein may serve as a �rst stage
into the perceptual grouping of velocities, allowing to
identify the occluding and occluded signals not only
at occluding boundaries but within regions exhibiting
coherent motions, and therefore leading to performing
motion-based image segmentation. Further, Occlusion
detection operators could also be developed within the
context of this theoretical framework and unreported
experiments conducted with occlusion-tuned Gabor �l-
ters on a 1D pair of translating signals show this pos-
sibility.

Experimentally, the limiting conditions under which
the current techniques fail must be established. For in-
stance, the degree of multiple velocity resolution and
the factors inuencing it must be identi�ed. In its cur-
rent state, the experimental evaluation only con�rms
that noise-free imagery under optimal conditions yield
noise-free results. However, it has been clear for some
time that a number of vision algorithms fail to meet
this fundamental criterion [1].

To conclude, we have demonstrated the feasibility of
computing discontinuous motions and other measure-
ments such as the local identi�cation of occluding ve-
locities and occlusion boundary normals, translucency
phenomena and the disambiguation of occluding signals
su�ering from the aperture problem. The theoretical
framework under which these algorithms have been de-
vised constitutes a foundation for further research in
motion analysis. Indeed, we strongly believe that fur-
ther developments in the �eld of optical ow and motion
analysis ought to be based on �rmly established theo-

retical backgrounds rather than incidental evidence [6].
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