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Abstract

A direct motion interpretation and segmentation
method based on a motion model and robust statistics
is proposed: estimation of optical velocities is consis-
tent with the assumption of rigidity of environmental
objects and accounts for motion discontinuities. The
method has been tested both on several synthetic and
real image sequences.

I. INTRODUCTION

One of the primary goals of motion analysis is to
determine the 3-dimensional (3-D) structure of envi-
ronmental objects and their movement relative to the
viewing system. Usually, optical velocities are �rst es-
timated from the image spatio-temporal changes, and
then interpreted in terms of the 3-D variables of mo-
tion and depth. However, one can combine these two
steps and determine depth and 3-D motion \directly"
from the spatio-temporal changes [1]. Once depth and
3-D motion determined, motion segmentation can be
sought that is consistent with the assumption of envi-
ronmental rigidity. For correct motion segmentation,
motion estimation must account for motion disconti-
nuities.
Motion estimation is an ill-posed problem [2]. A well

posed problem is often obtained by regularization [3; 4].
Regularization can take a deterministic form [3] or
a stochastic form [5]. In either case, if motion dis-
continuities are not accounted for, blurring of mo-
tion estimates occurs at these boundaries. To account
for motion discontinuities, a variety of constraints
have been proposed. For instance, the oriented-
smoothness constraint [6] attenuates smoothing across
strong intensity edges, which are identi�ed with motion
edges. Simpli�ed, computationally more e�cient ver-
sions of the oriented smoothness constraint have been
developed [7], but at the cost of signi�cant computa-
tional complexity. Motion discontinuities can also be
processed in stochastic regularization by introducing
variables to designate motion edges [5; 8]. This also in-
creases signi�cantly computational complexity which
is already inherently high. Simpler, but still e�cient
methods use implicitly or explicitly outliers detection
and rejection, outliers appearing inherently at motion
boundaries [9{11].

Schunck [9] argued strongly in favor of robust re-
gression for the outlier detection and rejection. A
robust algorithm [9; 12] should be able to cope with
noise, other data distortions and outlier occurrence.
Proposed robust algorithms are of various complexity.
Some can be of signi�cant computational complexity
(e.g., clustering methods [13]). Others, such as M -
estimators, have low computational cost, but have a
sensitivity to outliers that is proportional to the num-
ber of unknown [14]. Conspicuously, the least median
of squares (LMedS) method has low sensitivity to out-
liers, can account for noise and other data distortions,
and be implemented e�ciently [12; 15].
In this paper, we present a direct motion interpreta-

tion and segmentation algorithm based on robust sta-
tistical estimation of a rigidity-based parametric mo-
tion model. Moving objects are subsequently seg-
mented by adaptive K-means clustering.

II. MODEL AND ALGORITHM

A. Motion Estimation and Parametric Model

The Horn and Schunck gradient equation:

fxu+ fyv + ft = 0; (1)

relates the spatial (fx and fy) and the temporal (ft)
derivatives of the image brightness function to optical
velocity, (u, v) at each point. A reection of the aper-
ture problem, each such equation determines only the
component of optical velocity in the direction of the
gradient.
For both u and v, we substitute their expression in

terms of depth and the parameters of motion in space,
the environment assumed rigid:(

u = �xy!x + (1 + x2)!y � y!z +
�x�x�z

Z

v = �(1 + y2)!x + xy!y + x!z +
�y�y�z

Z

(2)

where (x; y) are the image coordinates of point
(X;Y; Z) in space. �x, �y and �z are the translation
components and !x, !y and !z are the rotational com-
ponents of rigid motion, respectively [16]. If we sub-
stitute this expression of optical velocity into Eq.(1),
we obtain an expression relating the brightness pat-
tern spatial and temporal derivatives to the kinematic
screw and depth:



fx(�xy!x + (1 + x2)!y � y!z +
�x�x�z

Z
)+

fy(�(1 + y2)!x + xy!y + x!z +
�y�y�z

Z
) + ft = 0

(3)

Let �̂i = �i=Z, i = x; y and z. E�ecting this change
of variables in Eq.(3) we obtain the following linear
equation:

fx(�xy!x + (1 + x2)!y � y!z + �̂x � x�̂z)+

fy(�(1 + y2)!x + xy!y + x!z + �̂y � y�̂z) + ft = 0

(4)

To solve for these components we need to write a sys-
tem of at least six equations.
We assume that environmental surfaces are piece-

wise planar so that 1=Z(x; y; z) is constant over a local
image patch centered on each image pixel.
The linear system of equations written for the points

in such a patch must be rank-su�cient; i.e., at least
six spatial gradient must exist and have di�erent di-
rections. One must also ensure that the system is not
ill-conditioned; ill-conditioning is likely to occur in ap-
proximately uniform image pattern regions.
When a motion boundary occurs, points in the patch

are sampled across the boundary and the assumption
that a single rigid body is observed is not valid. There-
fore a single linear �t using these point is inappropriate
as up to 50 % of these points will give rise to outliers.
In addition, violations of the image/motion model as-
sumption, such as brightness constancy and a�ne mo-
tion, can be viewed as \outliers" [17].
There is imprecision in image coordinate and im-

age pattern derivatives because of optical sensing noise,
discretization and algorithmic approximations for the
derivatives. However, most of these noises can be mod-
eled as Gaussian noise. We need to choose a robust
estimator such that it is insensitive to both Gaussian
noise and outliers.
To solve some of above problems, a statistically esti-

mator is required at least. We shall retain the LMedS
estimator. Once pure parameters have been estimated,
multiple moving objects can be segmented and 3-D mo-
tion parameters and structure for each object can be
recovered.

B. LMedS Estimator

In LMedS regression, the estimates of the model pa-
rameters are given by nolinear minimizing the median
of the squared residuals:

Min(~a) [medi (r2i )]; (5)

where ~a is the unknown parametric vector to be esti-
mated. ri is the residual at point i with respect to the
LMedS �t.
The minimization of median squared residuals can-

not be obtained analytically and there requires re-
spected evaluations for di�erent subsamples of size p
drawn from the n observations. In principle one could
repeat the above procedure for all possible subsam-
ple of size p, of which there are Cp

n. Unfortunately, a
complete trial would rapidly become impracticable for
large n and p values. In many application, it become
infeasible. Some e�ciency is possible, however, by
adapting a Monte-Carlo approximation. Wousseeuw
and Leroy [12] determined the minimum number m of
subsamples required to obtain a given probability � of
drawing at least one subsample containing only good
observations from a sample containing a fraction � of
outliers. By requiring � to be su�ciently close 1, m
can be determined for given values of p and �:

� = 1� (1� (1� �)p)m: (6)

For such a subsample, index by J = (i1; :::ip), one
can determine the regression surface through the p
point and denote the corresponding vectors of coe�-
cients by ~aJ This step amounts to the solution of a
system of p linear equations in p unknowns. For each
~aJ one also determines the corresponding LMedS ob-
jective function with respect to the whole data set.

med(i)[zi � f(xi; yi;~aJ)]
2 (7)

is calculated. Finally, one will retain the trial estimate
for which this value is minimal.
The breakdown point of LMedS is

int[n
2
]�p+2

n
. The

breakdown point is the smallest percentage of data
that can be incorrect to an arbitrary degree and not
cause the estimation algorithms to reproduce an ar-
bitrarily wrong estimate. Therefore, the asymptotic
breakdown point is 0.5. In addition, LMedS has sev-
eral other interesting properties: it always yields a so-
lution; LMedS estimator can be implemented more
e�ciently that repeated median estimator; it is also
relatively easy to identify most of the outliers. All of
LMedS properties well suited to the present problem.

C. Implementation and Validation

1. Derivatives

We must estimate the derivatives of brightness from
the discrete set of image brightness measurement avail-
able. It is important that the estimates of fx, fy and
ft be consistent. That is, they should all refer to the
same point in the image at the same time. Most tech-
niques deal with the information from two frames, but



information from multiple image frames or a sequence
of image can be considered. For the estimation of the
image brightness partial derivatives, the operators de-
rived from that of Prewitt have been used.

2. Robust Regression

In order to improve on LMedS, it is followed by a
least squares (LS) �t on the outlier-free datum that it
produced.
LMedS algorithm must be carefully designed to

remove outliers and preserve discontinuities. In the
LMedS regression, we should identify point i as an
outlier if and only if jri=�̂j is large:

wi =

(
1 if jri=�̂j � 2:5

0 if jri=�̂j > 2:5
(8)

where,

�̂ = C
q
med(i)r

2
i ; (9)

C = 1:4826[1+ 5
(n+p) ] is a constant. This means simply

that case i will be retained in the weighted LS if its
LMedS residual is small to moderate, but discarded if
it is an outlier. The bound 2.5 is arbitrary, but quite
reasonable because in a Gaussian situation there will
be very few residuals larger than 2.5 �̂.
As a �nal step, we can determine and use the solution

corresponding to a LS �t of the 1-weight points. We
�nally present the results of both stages together.
We divided the input image into overlapping patches.

The same motion parameter was assumed in each
patch. We assume that in each patch there is a domi-
nant motion, the motion corresponding to a single en-
vironmental object and that includes 50 % or more of
the image points in the window. Outliers are taken to
be those image points which do not correspond to the
dominant motion. LMedS is applied to each window.
We have used a 5�5 window size with a subsample size
of 6. Thus the typical motion estimation is a regression
problem for p = 6 motion parameters with n = 25 data
points.
To use LMedS regression correctly, this method is

subject to a condition that the points in the window
do provide a resolvable system of linear equation that
is not ill-conditioned. If it is not the case the output
of LMedS is labeled UNKNOWN at the center of the
window. A value at each point is obtained subsequently
by local averaging. To reduce the number of UN-
KNOWN labels, we also used the multiple-constraints
method [18].

3. Segmentation

Motion segmentation consists of grouping pixels that
belong to independently moving objects in the scene.
We use the classic adaptiveK-means to cluster 3-D mo-
tion parameters in recursive fashion to detect multiple
motion regions in the scene: at each iteration, a dom-
inant motion region is detected. Once the dominant
region is identi�ed and the motion within the region
is estimated, it is eliminated and the next dominant
motion is estimated from the remaining portion of the
image [19].

III. EXPERIMENTAL RESULTS AND

DISCUSSIONS

To investigate the performance of the approach, we
use the following variety of image sequences contain-
ing di�erent types of camera and independent multiple
object motion: 1). SOFA, which is a package of syn-
thetic sequences designed for testing motion analysis
applications (http : ==www:cee:hw:ac:uk= mtc=sofa).
2). Hamburg taxi real world sequence. 3). Highway
real world sequence.

A. SOFA Synthetic image sequences

Fig.1 One frame from the SOFA synthetic image
sequences which consist of a cube and a cylinder

(256� 256).



SOFA is a package of synthetic image sequences de-
signed for testing motion analysis applications. All the
cases, the motion is solely due to that of the camera.
The scene consist of cube and cylinder, as shown in
Fig. 1. The class of motion includes pure translation,
pure rotation, and translation and rotation motion.

Fig.2 Optical ow using the algorithm of this work for
pure translation synthetic image sequence.

Fig.3 Optical Flow using the algorithm of this work
for pure rotation synthetic image sequences.

Pure Translation: The result using our method is
shown in Fig.2, where we know the true motion. In

this sequence, the camera is moving forward parallel
to the z� axis. As we know, when the camera motion
is a pure translation towards the environment, all the
displacements on the image appear to emanate radially
from a single point in the image. The recovered optical
ow �elds show this characteristic clearly, where the
intersection point located at the center of the image.
The recovered �eld quality in the cube section is better
than that in the cylinder section.
Pure Rotation: This sequence was recorded using a

camera which circle routed on a plane perpendicular to
the y� axis. The distance between camera and y�axis
was �xed. The result using our method is shown in
Fig.3. As expected, motion �eld for each image point
follow a rotation axis is a conic. The moving disconti-
nuities were well preserved. The result are quite close
to the optimal results. It is noticed that the estimated
velocity for cylinder section in pure rotation is much
better than that in pure translation.

Fig.4 Optical ow using the algorithm of this work for
translation and rotation synthetic image sequence.

Translation and rotation: The result on the SOFA
sequence for both translation and rotation motion are
shown in Fig. 4. The camera translated parallel to the
z-axis and rotated around the camera z-axis simulta-
neously. The same result with Horn and Schunk' ap-
proach is also shown in Fig. 5. As shown in �gures, the
di�erences between two results are considerable. The
result of using our method is better than that obtained
by Horn and Schunk's approach. Our results have good
sharp in the vicinity of the motion discontinuities and
can predict the optical ow almost for the whole mov-
ing object. Horn and Schunck's approach can not give
good results for the region with small derivative val-



ues of brightness. The estimated optical ow with our
methods are more reasonable than that of Horn and
Schunck's approach.

Fig.5 Optical ow using Horn and Schunk algorithm
for translation and rotation synthetic image

sequences.

B. Hamburg Taxi Sequence

Fig.6 One frame of Hamburg taxi image sequences.

A good real-world image sequence for multiple mov-
ing objects is Hamburg taxi. This famous scene se-
quence contains three important moving objects: a taxi
near the center turning around the corner; a car in the
lower left, driving from left to right; a van in the lower
right driving from right to left. Fig. 6 show one of
frame of this image sequence (256� 190).

Fig.7 Optical ow using the algorithm of this work for
Hamburg taxi image sequences.

The results of our algorithm drawn from 5th to 7th
frames are shown in Fig. 7. One can notice that the
motion estimation remains consistent in tough parts of
the dynamic scenes and the independent motion of the
three moving cars can be clearly distinguished. The
\taxi" moving objects has better the sharp of motion
discontinuities than that of \car" and \van" moving
objects. Although, the shapes of motion discontinuities
are not as sharp as that in synthetic image sequence.
The recovered optical ow �elds seem of good quality.

C. Highway Sequence

Fig.8 One frame from the original Highway sequences
(256� 128).

The second image sequence with multiple moving ob-
jects is a real-world highway scene showing busy tra�c.
One 256� 128 frame of this image sequence is shown
in Fig. 8. The scene consists of four important mov-
ing objects. Three of them (two cars and one truck)
is going along the right side of highway. A group of
cars at the left top are coming in the reverse direc-
tion. Because of di�erent depth, it is obvious that



di�erent moving objects have larger relative 2-D ve-
locities in the sequence compared with Hamburg Taxi
sequence. In addition, for the largest motion, the im-
age displacement is larger than a signal pixel, which
may violate the assumption of a�ne motion. For large
and multiscale motion estimation, a standard solution
is the use of multiresolution analysis with a coarse-to-
�ne strategy [20]. In principle, the present methods can
be extended to this approach in the cost of increasing
complexity. For simplicity, we assume the violation of
a�ne motion can be viewed as \outliers".

Fig.9 Optical ow using Horn and Schunk algorithm
for Highway image sequences.

In Figs.9 and 10 the velocity vector �elds estimated
by the algorithm of this work and Horn and Schunk's
algorithm. As expected, we can clearly see from these
results that our method performs better than Horn and
Schunk's approach. It is interesting to note that in the
case of the Highway sequence, the present algorithm
is able to provide good estimation in the large motion
region. Robust regression has been shown to provide
accurate motion estimates in a variety of situation in
which a�ne motion assumption is violated.

Fig.10 Optical ow using the algorithm of this work
for Highway image sequences.

IV. CONCLUSIONS

In this paper, we have proposed a direct motion in-
terpretation and segmentation method based on the

robust estimation of parametric models. Our method
can robustly recover 3-D motion parameters rejecting
the outliers caused by moving object boundary discon-
tinuities, noise and the violation of model assumption.
In the implementation, two-stage technique, in which
robust methods in the �rst stage to remove outliers
and weighted LS methods in the second state, was
able to handle outliers and Gaussian noise simulta-
neously. Based on the robust estimation of paramet-
ric model, the moving object segmentation was imple-
mented by an adaptiveK-means clustering algorithms.
Applications of the proposed method on both synthetic
and real image sequences have been demonstrated with
promising results.
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