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Abstract

In this paper, we present a class of combinatorical-
logical classifiers called test feature classifiers. Intro-
ducing kernels and a rejection option we discuss the
properties and performance of the proposed classifiers.
To test the performance of the classifiers, we apply
them to a well-known phoneme database and textual re-
gron location problem. Qur experimental resulls show
that the proposed classifiers have very high stability and
performance and suggest that they can be used in a va-
riety of pattern recognition applications.

1. Introduction

Since the birth of electrical computing machines im-
portant advances have been made in the field of classi-
fier learning from examples. However many classifiers
in the learning phase require optimization methods,
and have problems with convergence, stability and time
efficiency. Statistical and structural methods learn
badly when exact statistical or structural knowledge
1s not available. Any method based on metrics uses
the hypothesis that the proximity in the data space
generally expresses the membership of the same class,
and therefore a data set which does not satisfy this
condition cannot be treated by such an approach.

In this paper, we present a class of combinatorical-
logical classifiers called test feature classifiers. These
classifiers allow us to avoid many of the above draw-
backs. Classifiers are generated directly from training
samples using so-called tesis, sets of features that are
sufficient to distinguish patterns from different classes
of training samples. The concept of the test was first
introduced in [1] for the purpose of digital logic cir-
cuit analysis. It was then realized that tests could be
very useful in pattern recognition. First, as the pattern
recognition tool tests were used in [2]. The concept of
test feature classifiers was presented in [3].
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Test feature classifiers are m-degree polynomials,
and can be used for partitioning the n-dimensional fea-
ture space, m < n, whose features are assumed to
be binary-valued. Optimization methods, statistical,
structural or metrical characteristics of patterns are not
required. In this work, we have attempted to address
some 1issues relevant to test feature classifiers which
have not previously received attention. The perfor-
mance of the proposed classifiers depend on the selec-
tion of tests and training samples. Introducing kernels
and a rejection option we discuss the properties and
performance of the proposed classifiers. We describe
cases when a 100% of recognition rate can be achieved.

We applied the proposed classifiers to a well-known
phoneme database and textual region location prob-
lem.

The choice of the phoneme database was dectated
by two factors: the phoneme database is one of the
largest available in the Internet, and it is known to be
a difficult classification problem. We compere the per-
formance of proposed classifiers to the performance of
the conventional classifiers. Our simulations show that
the proposed classifiers have much better performance
than conventional methods.

Automatic textual region location deals with ex-
tracting image regions that just contain text. This is
very useful in a number of applications such as image
database retrieval, identification of products (such as
books, CDs, etc), and reading street signs and notices
which 1s an important part of the automatic function
of robots and navigation systems. Several Approaches
to text location in complex images have been proposed
[7, 6, 8 9]. In [7] a connected component approach
in [8] a connected component approach in combina-
tion with OCR system have been proposed. In [6]
a hybrid method has been proposed which combines
the connected component approach and a spatial vari-
ance approach. In [9] the method of multivalued image
decomposition was proposed. The connected compo-



nent method does not work well with natural images,
where the characters have blurred boundaries, images
with non-uniform illumination, images where charac-
ters have similar color as a background, and images
with characters of different color components. The
connected component method is also sensitive to the
heuristic threshold values such as the size and diam-
eter of component, and length of aligned characters.
The spatial variance approach 1s direction sensitive and
does not work well with natural images with high vari-
ance background, or images where characters are not
aligned. The multivalued image decomposition method
1s also based on the connected component analysis, it is
direction sensitive, and can only locate horizontal text,
which is relatively large size.

In an attempt to avoid the above shortcomings we
introduce a new approach for locating the text, which
1s based on Fourier spectrum features and test feature
classifiers. The main characteristic of text is its reg-
ularity. We propose that frequency space characteris-
tics are more appropriate for text region recognition.
We assume that the text’s regularities are implicitly
contained in the Fourler spectrum features. In a typ-
ical classification system, feature extraction is usually
of key significance to the overall system performance.
However the performance of the system also strongly
depends on the type of classifier used. We show that
even with a primitive feature extraction procedure the
proposed TFNN classifier yields surprisingly stable
and high recognition rates. The major advantage of
the proposed method locating text compared with the
previous approaches is its, orientation, alignment, size
and color independence.

2. Test Feature Classifiers

Assume that P is an n-dimensional feature space,
P ={t = (t1,...,t,)}, and each pattern is represen-
ted as a binary-valued feature vector in this space
t; € {0,1}. Let us also assume that there are 2 possible
classes [; and [,. The problem of designing a classi-
fier for pattern recognition can be stated as follows: a
function ¥V must be found such that a pattern z is in
the class [; (in the class I,) if and only if V(z) >0
(V(z) <0).

Let us denote By = {Z1,..., %, } as a set of train-
ing samples from the class I, and By = {g1,....Jm,}
as a set of training samples from the class [,, where

xl—($1,. I)l—l .My, yz—(yl" ’yn)l_

I n

1,...,msq, and By N By = @. A collection of features,
7= {i1,yix}, (1 < k < n)is called a test feature (or
test) of By and B, if for any p (1 < p < my) and any ¢
(1 < q < my) there exist some i, € 7 (1 < 5 < k) such
that xfs + yi. In other words, a test is a collection
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of features (a projection) which is sufficient to distin-
guish vectors from different classes of training samples.
If for a test 7, the set 7 — {i;} is not a test for any s
(1 < s < k), then 7 is called a prime test feature (or
prime test).

A test 7 = {i1,...,ix}, can be considered as an
n-tuple vector, 7 = (7,...,7,), where 7; is 1 if { €
{i1,...,7% }, and 0 otherwise. Introducing tests allows
us to construct different types of classifiers for the pur-
pose of pattern recognition.

For a given test 7 we can measure the degree of sim-
ilarity of an unknown pattern ¢ to the training pattern

z by
n
H(l = 7ilti — ;)
i=1

This expression takes the value 1 if and only if ¢ and z
coincide in the features defined by test 7, and takes the
value 0 otherwise. In this case no metric is used and
only an equivalence relation is required. The degree
of similarity can also be measured in the classical way,
using distance

(1)

d(Tot,7ox), (2)
where d i1s a distance metric, and the operation o has
the following meaning, ao b = (ay - by, ..., a, - by).

Denote T to be a set of tests. Taking (1) as a mea-
sure of similarity we calculate votes V; (¢) and V5(¢) for
the classes J; and [, in the following way

Z ZHI—TZH —zi|)

TET rEB, i=1

ZZH

TET JEByi=1

Va(t) = — 7ilti — uil).

We call a classifier based on the discriminant function
V(t) = Vi(t) — Va(t) as test feature classifier [3] and
denote it by TFp. We extend TF to reject patterns {
for which V(¢) = 0, and denote T'Fr classifier as TF Ry
for the rejection option.

Similarly, taking (2) as a measure of similarity and
using the nearest neighbor concept we introduce a new
classifier. For each test 7 € T we calculate votes W7 (?)
and WJ(t) for the classes ; and [, by the nearest
neighbor rule, using (2) as a measure of similarity. Let

Wi = — S W)
Wall) = 7; WD),

We denote the classifier based on the discriminant func-
tion W (t) = Wy (t) — Ws(t) by TFN Ny .

Denote the number of features (1s) in a test 7 as |7|.
We say |7] is the length of 7.



2.1. Performance

It 1s easy to prove that TF, TFR and TFN N have
no error on the training samples. As seen from the
definition of the test feature classifier the classification
performance of T'F on the test samples depends on the
set of tests 7', and on the set of training samples B,
and B. Let us call a test (a prime test) of I; and I, a
kernel (a prime kernel). To provide the maximum clas-
sification rate for T'F we need to find a set of kernels.
If % is a kernel then obviously & is a test for B; and B,
and the following relation holds

re )

Bi€l, Byel;

T (3)

where 7' is the set of all tests for By and B,. In general,
it 1s impossible to find a set of kernels for unknown [,
and [,, but we can estimate it from the training sets
using relation (3). Suppose that a set of kernels K
for unknown [; and [, is found. It is easy to see that
TF Ry has a 100% recognition rate on any test samples
for any training set. Even if we know a kernel, we need
an appropriate training set to obtain a recognition rate
of 100% for TF classifiers.

We say that pair (B, K), B = By U By, covers a
pattern z if there exist # € B and k& € K such that
Z-k =z - k. Denote by C(B, K) the set of all z that
are covered by (B, K). We call a set B as a prototype
set for K if C(B, K) D I Uls. It is easy to see that if
B is a prototype set for K then 7' Fx will have a 100%
recognition rate on any test samples.

Let us describe two important properties of cov-
erings. If Ky C K, then |C(B, Ky)| < |C(B,K2)|
If |£1] < |R2| and &y - ke = Ky, then |C(B, k)| <
|C(B, £1)|- From these properties we can conclude that
in general to achieve a high recognition rate for test
feature classifiers we should select a set of short tests
using (3), and the more short tests we have the better
the recognition rate is.

The approach with kernels is suitable when the set of
all kernels is different from the trivial set {(1,1...,1)}.
Below, we estimate the number of classes which have
non-trivial sets of kernels.

Denote T' to be the set of all prime tests. Denote
T;.i =1,...,n, to be the set of all prime tests containing
the i-th feature. Let p, |TZ|/|T| We call p; an info
weight [3]. The classes I; and [, can be represented
as a Boolean partial function f(x,...,2,) such that
f(z) =0 when z € I}, and f(z) = 1 when z € I5. The
ith variable of f is called an essential variable if there
exists (ay,...,an) and (by,...,b,) such that a; = by,...,
ai—1 = bi_1, a; 7& b;, a1 = bi+1v"'a an = by and
flay,...;an) # f(b1,...,b,). It can be easily proved [3]
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that the sth variable of f is an essential variable if and
only if the info weight p, = 1.

Denote S(n) to be the number of all partial func-
tions with at least one essential variable defined on m
number of n-tuples. Denote S, ,,,(n) to be the num-
ber of all partial functions with at least one essential
variable that takes the value 0 m; times, and the value
1 m, times. Let m = my + my. First, we estimate
Sm1m2 (n)

A set of m; — 1 number of n-tuples oy, ..., &, 1
with the property f(a;) = 0 can be selected in (m:in_l)
different ways. From the remaining 2" —(m;—1) tuples,

a set of my — 1 number of n-tuples 3, ... 3,,, 1 with
the property f(3;) = 1 can be selected in (2":n(m_11—1)>

different ways. Suppose that the remaining two tuples
(where f is defined) guarantee the essential dependence
on one of the variables x4, ..., z,,. The essential variable
x; can be selected in n different ways. Let 5 be an n-
tuple from the remaining 2" — (my + ma — 2) tuples.
J(7) can be equal to 0 or 1. Since g; is an essential
variable then the last remaining (mj 4+ ms)th n-tuple
6 will be determined uniquely. Thus

Sm1ﬂ’b2 (n) S <m21n_1) (271:71(:1—11_1)) x
2n(2" — (my + ma — 2))

Note that the above expression is an upper bound,
since we take into account even impossible cases when
for example § is already selected between (m; +my—2)
n-tuples.

Denote R(n) to be the number of all partial func-
tions defined on m tuples. It is easy to see that
R(n) (2n)2m. The following lemma gives asymptotic
growth ratios of S(n) and R(n) in the cases, when the
domain of partial functions consists of n* tuples, k > 1,
1. e., mi + meo = nk.

Lemma.

im S0
w5 R(n)

Proof. Without loss of generality we consider & = 2.

0 <
X 2m(2 = (= 2)(,00) ()
G -
w2 =0’ +2) T () ()
o
Since

X (o)l

mi+mao=n?



<

i on 2 —my 41
= m—1/\n?=—my—1/) —
271

o) 20

1t follows that

S(ny _ 20(2" = n? + 20?5 ) (A
< _ =
R(n) = (7a)2"

2n3(n?)!
207 (27 — n? + 1)((n2/2 — 1)H)2"

From the well known Stirling formula we have

(2! V2An*/2)ln?/2)!

omn? NZZD
Thus,
S(n) n3((n?/2)!)? _
Rn) = Cn@ —n+ (2 /2= D12

n’(n?/2)(n*/2) _ o n°

n(2" —nZ+1) M —nZ4l

Since 2197 < 97 _ p? 4 ] then

S(TL) Cl n6

— 9(1—e)n -

A

0. O

From the lemma we can conclude that almost all func-
tions (with a domain of n* tuples, k& > 1) do not have
essential variables. Therefore, for each :th feature the
info weight p; # 1 and the set of kernels is non-trivial.
Thus, in the cases when |I; U Ir| ~ n* k > 1, (these
are cases which we encounter in reality when n becomes
large) almost all classes have a non-trivial set of kernels
and if we are able to select a set of kernels (from a set
of tests) we will have a 100% recognition rate.

3. Experiments on Phoneme database

We applied the proposed classifiers to the phoneme
data (Table 1.a) which is available via ftp at: ftp.dice.
ucl.ac.be. The classification problem of the phoneme
data is to distinguish between nasal and oral vow-
els. There are 5404 samples in this database. The
phoneme database is known to be a difficult classifica-
tion problem [4]. The dispersion matrix computed on
the phoneme databese is given at Table 1.b, and Fis-
cher’s coefficient is equal to 0.0756. As seen from dis-
persion matrix and from value of Fischer’s coefficient
classes are very overlapped.
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Features

1 1.239670 0.874530 -0.20510 -0.078137 0.066867 | O
2 0.268281 1.351780 1.035080 -0.331522 0.216897 | 0

Class

0.136604 0.714084 1.349810 0.972467 -0.630074 | 1

a) Phoneme database.

Class 0 1
0 0.0 0.62
1 0.62 0.0

b) Dispertion matrix computed on the phoneme database.

K-Nearest Neighbor 87.76%
Neural Network 79.21%
C4.5 Decision Tree 83.92%
Quadratic Bayes 75.41%
Linear Bayes 73.00%

¢) The best results for each classifier.

Table 1.

There meny papers related to the phoneme data
recognition problem (see [4]). In Table 1.c we list the
results of the different classifiers, which were obtained
in [3]. Each classifier was optimized with respect to
selecting ” good” values for the parameters which gov-
ern its performance. The database was divided into
two equal halves. One half was used as training set
and the classification accuracy was then evaluated us-
ing the other half. The recognition results in Table 1
show that conventional methods incounter difficultes
on large complex data set like phoneme.

To apply TF to the phoneme data features were
rounded to two decimal places, Table 2.a (two deci-
mal places is a minimal representation of the features
by which patterns from different classes can be distin-
guished), and we used a binary representation of them.
We divided the phoneme database into equal halves
for training and testing, keeping same conditions as
in [3]. In Table 2.b we show T'Fs recognition rates,
where T} is a set of randomly chosen short prime tests
(with no kernels) of training samples, and 77 is a set of
kernels. Even when a lot of information is lost due to
the rounding feature space, recognition rate of 7T F's are
much higher than conventional ones. T'F's can achieve
high recognition rate even with no kernels. The second
half of Table 2.b shows what would happen if we were
able to select even a small part of kernels. The more
short kernels we have the better is the performance of
TF and the less rejections we obtain for T'FR.



Features Class

1 124 0.87-0.21 -0.08 0.07( O
2 1027 135104 -033022|0

5404/ 0.14 0.711.35 097-063] 1

a) Phoneme database with rounded features.

TF,  |T|=400 89.32%
TFRy 89.52%, 176 rejected
TENN 95.65%
TFr, |T2|=800]90.27%
TFRy, 90.34%, 125 rejected
TFNN; 95.58%
TFr  |Ti|=400| 96.41%
TFRy 100%, 728 rejected
TF1; | B|=800]99.09%
TFRy; 100%, 309 rejected

b) Results for TF classifiers on the phoneme
database with rounded features.

Table 2.
\ \
V)N
I — H
vi) 7 Y /u\ “
u@) "~ u(+l)

Figure 1. Fourier transform feature masks.

4. Textual Region Locating

In this section, we describe an application of the test
feature classifier to the problem of textual region loca-
tion. Our approach is to find all text areas and as few
spurious non-text areas as possible, without actually
classifying the characters.

At the beginning, the input is divided into 64 x 64
size blocks. For each block, the Fourler spectrum is
calculated and the feature extraction procedure is ap-
plied.

4.1. Feature Extraction

As we mentioned in the introduction the main char-
acteristic of text is its regularity. Our intention is to
express these regularities in a feature vector and then
apply test feature classifiers. By considering text re-
gions as having a certain texture, textural feature ex-
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traction methods can be useful for the text regularity
extraction.

Texture plays an important role in image analysis
and understanding. Many papers have been devoted
to the area of textural feature extraction and a num-
ber of various approaches have been proposed [10, 11].
A two-dimensional power spectrum of a texture im-
age 1is often employed for texture feature extraction
[12, 13]. Our choice of the power spectrum features is
dictated by the following reasons. First, a power spec-
trum 1s commonly used for the selection of periodic
information in the original spatial-domain image [13],
and Fourier transform based methods usually perform
well on textures showing periodicity [12]. Second, we
wanted to have a robust system. Therefore, we chose
to avoid methods based on spatial intensity measures.
Such methods require many parameters and threshold
values that must be set empirically and which can be
tuned only for individual classes of images [6].

A peak in the power spectrum image represents any
periodic structure of the original spatial-domain image.
Therefore finding the peaks of the power spectrum is
important for the texture description. The power spec-
trum M (u,v) is examined in specific regions to isolate
image features. Fig. 1 defines regions for the following
Fourier features:

a(S)= Y. Mu,v)
(u,v)€S

oo(S)= D Ma(u,v).
(u,v)€S

and c5(S), ca(S) which are standard deviations of the
values ) — uf_, and v/ — v/_, correspondingly, where
My (u,v (u,v) when M(u,v) is a local maximum
and M, = 0 otherwise. (u’ v’) are the coordi-
nates of these maxima. Mjy(u,v) is the difference be-
tween M (u,v) and the minimal value of the middle of
the neighborhood valleys when v = w',v = ¢/, and 0
otherwise.

The first feature ¢; expresses the energy of peaks
in the region and is expected to be high for the text
components images. By calculating ¢s, ¢5 and ¢, we
attempt to identify the regularities of the image. We
assume that the above features can implicitly express
the regularities of the text.

)=M
(u,0)

4.2. Experimental Results

In order to demonstrate the performance of the pro-
posed algorithm, the following simulations were per-
formed on a database of images. The database con-
sisted of various outdoor images including images with
non-uniform illumination, images where characters had
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Figure 2. Recognition rates of TF, TFNN, NN,
and AN N on test samples.
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Figure 3. Recognition rates of TFF, TFNN, NN,
and AN N on test samples for the text compo-
nent.

blurred boundaries, images with characters of differ-
ent color components, and images with high variance
background. The database was divided into two sets of
data, one for training and the other for testing. In the
experiment. we varied the number of randomly chosen
training samples from 30 to 100, and more than 650
blocks were tested. The number of features used in ex-
periments was 24. To use real-valued features in TF,
we quantized the feature space into the five nonuniform
intervals and then binary encoded them. The intervals
used in experiments were [0, min], [min, m — o /2], [m —
0/2, m+c /2], [m+0/2, max],[max, oo|, where m and &
denote the average and the standard deviation value of
a feature for the text component training set, respec-
tively.

On a given training set, we used the sets of randomly
chosen prime short tests 77 and 7y, where |77 | = | T3] =
800.

The proposed TF and TFNN classifiers were com-
pared with two of the most popular non-parametric
classifiers, a single nearest neighbor (NN) classi-
fier, and a backpropagation artificial neural network
(ANN). The neural network consisted of one hidden
layer (nets with two hidden layers learned badly and
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were excluded from the experiment), and the number
of hidden nodes ranged from 24 to 100. In order to
reduce the randomness of the AN N performance due
to different initial conditions, ten networks with differ-
ent initial weights were trained. The AN N with the
maximum performance was selected.

Results of the TFp, TENNyp,, NN and ANN
performance on test samples are shown in Fig. 2. It
can be seen that even when information is lost due to
the quantizing feature space, recognition rates of the
proposed T'F' are higher than those of NN and AN N,
which were applied directly to the real data.

As mentioned earlier, the main purpose of text locat-
ing method is to find all text areas and as few spurious
non-text areas as possible. This means that for the es-
timation of a classifier, not only the overall recognition
rate, but also the recognition rate for the text compo-
nent is very important. Because non-text objects can
be subsequently rejected by an OCR system, for a text
region locating system it 1s important to have minimal
loss on text regions even at the cost of increasing the
number of non-text areas. Fig. 3 shows the recogni-
tion rates of TF , TFNN, NN and AN N for the text
component. As we can see the performance of TFNN
is very stable and high, whereas all other classifiers
have very unstable and low performance. Although all
training samples in training sets and sets of tests T}
and T, were selected randomly, TF'N N shows surpris-
ingly stable and high performance. This demonstrates
that the proposed method is robust and efficient for
text region locating. Although 7T F has the best overall
performance (Fig.2), the results in Fig. 3 suggest that
TEFNN 1s the most suitable classifier for the purpose
of textual region recognition.

Fig. 4 contains examples of test images and results
of the classification by TFNN. Method gives good
results on images where neither connected component
method nor spatial variance based method can be ap-
plied.

5. Conclusions

The classifiers that have been presented are simple
and robust. Optimization methods, statistical, struc-
tural or metrical characteristics of patterns are not re-
quired. We discuss the properties and performance of
the proposed classifiers. Experiments on real data show
that T'F's can achieve a high recognition rate even with
no kernels. Especially high and stable performance is
shown by the TF N N classifier which give almost a 96%
of recognition rate on the phoneme data.

Based on test feature classifiers we also introduced
a new method for text region locating. The proposed
textual locating method 1s robust to variations in font,
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Figure 4. Recognition results of some test images.
(a) and (c) test images; (b) and (f) results of
applying TFN N to (a) and (c).

color, size, or orientation of the text. It does not re-
quires parameters and threshold values that must be
set empirically as in previous approaches and allow us
to avold many of drawbacks of the popular connected
component method and the spatial variance method.
The performance of proposed classifiers as a function
of varlous parameters were compared to the perfor-
mance of the conventional ones. The proposed TFN N
classifier yields surprisingly stable and high recognition
rates for text components.

Experimental results provide evidence of the practi-
cal utility of the test feature classifiers and they are
shown to have much better recognition ability than
conventional methods.
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