
An Incremental Hierarchical Clustering

Arnaud Ribert, Abdel Ennaji, Yves Lecourtier

P.S.I. Faculté des Sciences, Université de Rouen
76 821 Mont Saint Aignan Cédex, France

Arnaud.Ribert@univ-rouen.fr

Abstract

This article describes a new algorithm to treat time
incremental data by a hierarchical clustering. Although
hierarchical clustering techniques enable one to
automatically determine the number of clusters in a data
set, they are rarely used in industrial applications, because
a large amount of memory is required when treating more
than 10,000 elements. To solve this problem, the proposed
method proceeds by updating the hierarchical
representation of the data instead of re-computing the
whole tree when new patterns have to be taken into
account. Memory gains, evaluated for a real problem
(handwritten digit recognition) allow to treat databases
containing 7 times more data than the classical algorithm.

1. Introduction

Numerous techniques of pattern recognition and image
segmentation require an efficient clustering method to
understand, interpret and simplify large amounts of multi-
dimensional data [7][10][9][1]. Most of the time, k-means
algorithm and other partitional methods are used in
industrial applications [5][11][7][16]. However, they
present the major drawback of requiring close-to-the-final-
solution initial conditions, specially concerning the number
of clusters. This a priori knowledge is rarely at the user's
disposal because, if they use a clustering technique, this is
precisely because they ignore the structure of their data.
So, this constraint is intractable in the general case.

In fact, several authors recommend to use a hierarchical
clustering before starting the k-means algorithm, since it
does not require any a priori knowledge and provides a
good representation of the data. But hierarchical clustering
generally requires a great amount of memory, since it
increases with the square of the number of elements in the
database. So, treating 10,000 elements requires 200 Mo of

RAM, while 800 Mo are needed to deal with 20,000
elements. Such a memory cost may explain why
hierarchical clustering is rarely used in industrial
applications.

On the other hand, clustering techniques consider that
the given database is completely representative of the
problem, whereas in fact, this is rarely the case when
dealing with complex problems. In other words, from a
practical point of view, a complex problem is often an
incremental one. Consequently, it would be very useful to
be able to enrich a database to take into account patterns
which were not available at the time of the constitution of
the database. The problem is then to update one's
clustering.

Another advantage of incremental approaches is to
consider the original database as a small growing one. In
this scope, it might be possible to reduce the memory
requirements of the hierarchical clustering by building a
first numerical taxonomy (i.e. the tree resulting of a
hierarchical clustering) using the available memory and
updating it when new elements are taken into account. The
success of this strategy depends on the capability to update
a numerical taxonomy while keeping the largest possible
part of it. This is the objective of the algorithm that is
described in this paper.

In the next section, the main characteristics of the
hierarchical clustering are recalled. Sections 3 and 4
describe respectively the way to determine the anchoring
point of a new element in a numerical taxonomy and how
to update this one, starting from the anchoring point.
Eventually, section 5 presents experimental results over
real databases.

2. A brief recall on the hierarchical clustering

A hierarchical clustering method is a procedure to
represent data as a nested sequence of partitions. An

example of the corresponding graphical representation,
called a dendrogram, is shown on Figure 1. It is important
to note that the height of a node is proportional to the
distance between groups it links. Consequently, the shape
of a dendrogram gives information on the number of
clusters in a data-set. Thus, cutting a dendrogram
horizontally engineers a clustering (5 clusters appear in the
example of Figure 1). Numerous methods have been
proposed to determine the best cutting point, to
automatically find the number of clusters [Mil88].
Although these methods are often used, it has been shown
that a multi-point cutting leads to better results for real
data-sets [14][15].

Figure 1 : Example of dendrogram

Hierarchical clustering algorithms generally work by
sequential groupings of clusters. A numerical taxonomy
can be built using the following algorithm, where initial
points are considered as individual clusters.

Compute the euclidian distance between every
pair of points;
Merge into a single cluster the two closest points;
While (There are more than one group) Do

Compute the distance between the new
cluster and every existing one;
Merge into a single cluster the two closest ones;

EndWhile

It can be noticed that the euclidian distance can be
replaced by any other dissimilarity measure, that is to say a
metric d such that d(x,x) = 0, d(x,y) = d(y,x) and d(x,y) ≥ 0
(∀x,y). Moreover, an additional metric has to be
introduced to measure the distance between two groups.
Commonly used metrics are : the minimum or maximum
euclidian distance (called single and complete link) or the
average distance between the groups. This choice has a
great influence on the representation capabilities of the
taxonomy. The algorithm described in this article makes no
assumption on the used metric, so that the user choice is
free. However, a well-suited metric, which will be detailed
further, enables one to obtain better performance. On a
simplification purpose, we will consider in section 3 and 4
that the average link is used.

3. Determining the place of the new element in
the hierarchy

When a new element has to be added in a taxonomy, one
has firstly to determine its place in the tree. Several
methods have been proposed to achieve this [8]. They are
generally based on the estimation of a boundary layer
between the two sub-trees (i.e. groups) encounted at each
node of the taxonomy. Each boundary layer is used to place
the new element (NE) like a decision tree would do.
However, to our knowledge, none of these methods is
endowed of a stopping criterion, allowing for instance to
place a new element at the root of the taxonomy if it is
required.

It is of course impossible to consider that NE will be
the brother of its nearest neighbour. Indeed, the minimum
average distance between NE and a group can be reached
for a group which does not contain NE's nearest neighbour.
So, the research has to begin from the root of the
taxonomy. This implies the definition of a descent
procedure in the tree (including a stopping condition) so
that the process ends up on top of the right sub-tree, which
will be called R.

The implemented principle uses the notion of Region
Of Influence for a group G. Let D(G1, G2) be the distance

between two groups G1 and G2. Then, as shown on Figure

2, a point X belongs to the ROI of G1 if D(X, G1) ≤
D(G1, G2).

Figure 2 : Finding the place of a new element in a numerical taxonomy

Let Ω be the data set used to build a first taxonomy T.
Since NE is not present, R (the search sub-tree) is
aggregated with another cluster, H. When building a
hierarchy for Ω+{NE}, R is aggregated with NE when
D(R, {NE}) is the smallest distance between two clusters.
Consequently, it can be said that D(R, {NE}) ≤ D(R, H). In
other words, NE belongs to the ROI of R.

During the building process, it is known that the
creation of a cluster (composed of two groups Gi and Gj)

before the merging of R and NE implies : D(Gi, Gj) < D(R,

{NE}). This is particularly true for every sub-tree of R.
Consequently, NE does not belong to any ROI of the sub-
trees of R.

Moreover, as D(R, {NE}) is the smallest inter-cluster
distance when R and NE are aggregated, it can be said that
among the groups of T verifying the two first properties,
the searched one is the closest from NE. It can be shown
that these three properties are necessary and sufficient to
define (and find) R when dealing with binary hierarchies,
since in this case only one minimum exists [15].

It can also be noticed that this algorithm can be used to
perform a supervised classification or to detect exceptions.

4. Updating the numerical taxonomy

The second phase of the algorithm consists of
updating the taxonomy nodes, starting from the previously
determined point. The principle is to cut a sub-tree only
when it is needed, and to update node levels in all other
cases. The problem is to determine the conditions to be
verified to cut a sub-tree. The basic algorithm presented in

the following paragraphs proposes criteria to solve this
problem. A first optimisation is then proposed.

4.1. The basic algorithm

When a new element is added in a taxonomy,
there is theoretically no guaranty that a part of it will be
kept [13]. However, practically, experiments over 20,000
synthetic databases (without any data structure in the
representation space, in order to favour important changes
after the addition of the new element) have shown that the
whole recontruction never occured for databases of more
than 50 elements.

Two ways may be envisaged to update a
numerical taxonomy. On the one hand, one can try to
determine the exact changes that will occur in the
taxonomy due to the presence of a new element. On the
other hand, one can also determine what part of the
taxonomy will never be changed after the addition of a new
element. Since the first solution seems to be particularly
difficult, the second strategy has been retained.

Thus, when the place of the new element (NE) is
determined, an ascendant update of the hierarchy (starting
from the anchoring point) is performed. The objective is to
determine the groups inside the current sub-tree which
cannot be changed by the integration of the new element.
In fact, depending on the considered scale, NE insertion
may engineer two different effects on the data structure. At
a given level (i.e. on the top of a sub-tree), the new element
can contribute to bring two sub-trees nearer, or on the
contrary tend to move them away from each other.

Figure 3 : The new element brings two sub-trees nearer

Figure 4 : The new element moves two sub-trees away

The first case is illustrated on figure 3. In a first
time, element 7 contributes to bring element 6 and group
{4,5} nearer. Group {4,5} had been made because d(4,5)
was inferior to d(4,6) and d(6,5). Element 7 cannot call this
into question because it is not close enough from element
5. On the contrary, it calls into question the merging of 3
and group {1,2}. Indeed, the only parts of the taxonomy
that are necessarily kept are sub-trees whose threshold is
inferior to d(3,7), which represents the smallest distance
between {1,2,3} and {4,5,6}. More generally, it can be
proved [15] that when NE contributes to bring two sub-
parts A and B nearer, the smallest tree containing them has
to be cut at threshold Ct (for "Critical Threshold") which is

set to the minimum euclidian distance between A and B
(considering NE in A). This cutting is followed by a
classical taxonomy building.

The second case is illustrated by figure 4. Elements 3
and 6 are moved away because of element 7. Consequently,
no regrouping between 3 and 6 or 7 can occur. But if 3 is
moved away from {6,7}, it can at the same time be moved
closer from another group, particularly from group {1,2}.
So, such a merging has to be allowed during the
reconstruction of the taxonomy in cutting the tree at its
critical threshold. More generally, it has been demonstrated
[15] that when two sub-trees A and B are moved away
from each other, a cutting in their grandfather at its critical

threshold (Ct) has to be performed. Nevertheless, it can be

noticed that this will not occur if the average distance
between A and B does not exceed Ct. Indeed, in this case,

there is no risk to have another grouping than A and B
one : their average distance is only updated without any
structure change.

It can be observed that this algorithm is partly based
on the non-incremental taxonomy building. Consequently,
our algorithm can take advantage of every kind of
optimisation in the literature [3][6][4].

4.2. A major optimisation

The previous algorithm has been tested over a great
number of synthetic and real databases, showing that it led
to the good tree, but with an important computational cost.
Indeed, in many cases, it was necessary to cut two
consecutive trees although the first threshold was higher
than the second one. Consequently, a lot of calculations
were made several times. The following optimisation
proposes a way to avoid this.

1. Compute the cutting thresholds, considering that a cut
will be needed at each node during the ascendant
phase, even for increasing average distances.

2. Starting from the anchorage node, select cutting
thresholds such that any following cutting threshold is
strictly superior.

3. Run the ascendant phase, cutting only at the selected
thresholds.

It can be noticed that we have to consider that a
cut will occur even for increasing node indices. This is
because it is impossible to know whether the critical
threshold for a given sub-tree will be reached or not after
the update of the sub-trees that it contains. This potential
loss is nevertheless negligible in comparison to the gains
engineered by the proposed optimisation. This version has
thus been used in the following experiments.

5. Experimental results

The aim of these experiments is to measure gains provided
by the incremental algorithm in comparison to the classical
one (given in section 2). In order to favour good
performance, an original inter-cluster measure has been
developped. Indeed, the single link is the most favourable
measure for the incremental algorithm, because the height
of a node equals its critical threshold. Consequently, a
cutting would often be replaced by a simple re-evaluation
of the node height. Unfortunatly, data representation
provided by the single link suffers from the « chaining
effect » which tends to group all the patterns in a unique
cluster. A metric presenting a compromise between the
incremental algorithm performance and the representation
capabilities of the numerical taxonomy has therefore been
designed.

This metric has been implemented using the Lance-
Williams’ formula. This one is an efficient way to compute
the distance between a new cluster (consisting of groups r

and s) and an existing one (k). The metric used in these
experiments is computed by the expression below.

D k r s D k r D k s

D k r D k s

[(), (,)] [(), ()] [(), ()]

, [(), ()] [(), ()]

= + −

−

1

2

1

2

0 4960

Numeric terms have been determined by a dichotomic
procedure for a real database (handwritten digit
recognition) such that the supervised analysis of the
clusters reveals a good match between groups of data in the
representation space and the reality.

Tests have also been carried out for a handwritten digit
recognition problem (the NIST database), but for different
fractions of the data-set. The employed feature vector was
constituted by the 85 (1+4+16+64) grey levels of a
resolution pyramid (see Figure 5 below) [2].

Figure 5 : Representation of a 2 using a 4 level
resolution pyramid

Savings of memory and number of computed distances
appear in Figure 6 below. This curves represent the
averages over 50 different experiments.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

2 25 48 71 94 11
7

14
0

16
3

18
6

20
9

23
2

25
5

27
8

Number of elements

R
eq

u
ir

ed
 m

em
o

ry
 (

N
u

m
b

er
 o

f
fl

o
at

s)

Classical Algorithm

Incremental
Algorithm

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

2 25 48 71 94 11
7

14
0

16
3

18
6

20
9

23
2

25
5

27
8

Number of elements

N
u

m
b

er
 o

f
co

m
p

u
te

d
 d

is
ta

n
ce

s

Classical Algorithm

Incremental
Algorithm

Figure 6 : Memory and distance savings for a real database

A precise analysis of these curves show that for a given
memory size, the memory savings offered by the
incremental algorithm allow to handle databases
comprising 7 times more elements than the classical
building method. On the other hand, computational
requirements are very important and have to be reduced. In
spite of this, since the incremental algorithm can transform
memory requirements into computational ones, it can be
said that it allows to surpass the material limitations of any
computer.

6. Conclusion

This article describes an original algorithm to update a
numerical taxonomy after addition of new patterns in a
database. Tests have shown that using this algorithm allow
to progressively perform a hierarchical clustering of big
sets of data, which can then contain seven times more
elements than using the classical algorithm. In spite of the
computational cost of the method, it can be said that the
incremental algorithm described in this paper is a first stage
towards the use of hierarchical clustering in industrial
applications, thus offering an interesting alternative to
partitional clustering techniques. Further works should lead
to significant reduction of the computational cost of the
method by integrating already available optimisation
algorithms and adding more efficient rules of building.

Bibliography

[1] Arabie P, L.J. Hubert, G. De Soete, (eds.): "Clustering
and Classification", World Scientific Publ., River Edge,
NJ, 1996.

[2] Ballard D.H., Brown C.M., "Computer Vision", Prentice
Hall, 1982.

[3] Bruynooghe M., "Recent Results in Hierarchical
Clustering. I - The Reducible Neighborhoods Clustering
Algorithm", IJPRAI, Vol. 7, N° 3, pp. 541-571, 1993.

[4] De Rham C, "La classification hiérarchique ascendante
selon la méthode des voisins réciproques", Cahiers de
l'Analyse de Données, Vol. 5, n°2, 1980.

[5] Forgy E., "Cluster analysis of multivariate data :
efficiency versus interpretability of classifications",
Biometrics, Vol. 21, 768, 1965.

[6] Hattori K., Torii Y., "Effective algorithms for the nearest
neighbor method in the clustering problem", Pattern
Recognition, Vol. 26, n°5, pp. 741-746, 1993.

[7] Jain A.K., Dubes R.C., Algorithms for clustering data,
Prentice Hall, 1988.

[8] Jambu M., "Exploration informatique et statistique des
données", Dunod, Paris, 1989.

[9] J.D. Jobson, "Applied Multivariate Data Analysis,
Volume II : Categorical and Multivariate Methods",
Springer-Verlag, New-York, 1992.

[10] Kohonen T., "Self-organisation and associative memory",
Springer-Verlag, 1989.

[11] MacQueen J.B., "Some methods for classification and
analysis of multivariate observations". Proceedings of the
5th Berkeley Symposium on Math. Statistics and
Probability, Vol. 1, pp. 281-297, 1967.

[12] Milligan G.W., M.C. Cooper, "An examination of
procedures for determining the number of clusters in a
data set", Psychometrika, 50, n° 2, 159-179, 1985.

[13] S.Régnier, "Stabilité d'un opérateur de classification",
Mathématiques et Sciences Humaines, N°82, pp. 75-84,
1983.

[14] Ribert A., Ennaji A., Lecourtier Y., "Hiérarchies indicées
et catégorisation multi-échelle", 6ièmes Rencontres de la
Société Francophone de Classification, pp. 187-190,
Montpellier, Septembre 1998.

[15] Ribert A., "Structuration évolutive de données :
application à la construction de classifieurs distribués",
Ph.D Thesis, Rouen, France, October, 1998.

[16] Venkateswarlu N.B., Raju P.S.V.S.K., "Fast isodata
clustering algorithms", Pattern Recognition, Vol. 25, n°
3, pp. 335-342, 1992.

	en-tete: Vision Interface '99, Trois-Rivières, Canada, 19-21 May
	page1: 586
	page2: 587
	page3: 588
	page4: 589
	page5: 590
	page6: 591

