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Abstract

We present an analysis of a 2-D planar shape
descriptor based on the Discrete Wavelet Transform
(DWT), as an approach for compact object represen-
tation in multimedia applications. To generate the
wavelet shape descriptor (WD), a partial 1-D DWT is
applied on the vertical and horizontal components of a
parameterized closed curve that represents the contour
of an object of interest. With this shape representation
tool and based on a multiresolution analysis, the curve
can be reconstructed on a scale-by-scale basis to the de-
sired degree of approximation. We show that contours
of typical multimedia video objects are well represented
with a small number of the largest magnitude wavelet
coeÆcients, allowing for an eÆcient object shape rep-
resentation. Some issues on the selection of the coef-
�cients are studied. A comparison between the perfor-
mance of the WD using di�erent wavelet �lters and a
Fourier shape descriptor is presented, for synthetic and
natural contours. The potential use of this descriptor
in a multimedia application framework is discussed.

1. Introduction

An eÆcient representation of shape information is a
basic task in many areas of electronic imaging (image
and video processing and analysis, and computer graph-
ics). Furthermore, the recent MPEG-4 and MPEG-7
multimedia standards require segmentation and track-
ing of objects of interest of arbitrary shape, to pro-
vide a set of so-called content-based functionalities [4]:
selective compression, interactive video editing, and
retrieval functions. This new paradigm in represen-
tation of multimedia information -storing, accessing,
exchanging- imposes a need to �nd reliable and compact
shape representation tools that can describe either the
spatial characteristics or the temporal evolution of the
objects depicted in an image sequence. In particular,

for image and video content-based retrieval, the ulti-
mate objective is to integrate these shape representa-
tions with several other visual feature descriptors -color,
motion, texture- into intelligent models that allow for
robust queries in large visual material collections [12].

For several years, wavelet-based techniques have
represented a solid area in signal and image process-
ing [7] and have been very succesfully applied in image
and video compression [1]. Wavelet algorithms based
on matching pursuits [9] have been included for cod-
ing of the motion compensated residual signal in the
version 2 of MPEG-4 standard, and some others based
on embedded zerotree coding will be integrated in the
upcoming JPEG standard for still image compression
(JPEG-2000). Therefore, it is not suprising that the
interest in wavelet approaches for compact object rep-
resentation, detection and recognition in content-based
multimedia applications is increasing [10].

Recently, it was presented in [3] a multiscale de-
scriptor of planar shapes based on periodized wavelets
analysis in the continuous metric space L2([0; 1]). In
this paper we formulate the problem directly using the
DWT, and present an analysis of such a descriptor as
an eÆcient contour-oriented representation tool of ob-
jects of interest in a multimedia applications frame-
work. Wavelets capabilities for representing local fea-
tures of a curve, and signal energy compaction are ana-
lyzed, and a comparative study of the wavelet descrip-
tor characteristics and performance with respect to a
Fourier shape descriptor is presented.

The rest of the paper is organized as follows: sec-
tion 2 reviews the DWT planar curve descriptor theory;
section 3 describes the method for generation of con-
tours of objects of interest in typical multimedia ap-
plications; section 4 presents the experimental study
on the wavelet descriptor and its comparison with the
Fourier descriptor; section 5 discusses the potential of
the wavelet descriptor as a compact object representa-



tion tool, and section 6 concludes the paper.

2. The wavelet descriptor

Let fZ2t g be a discrete parameterized closed pla-
nar curve -that represents the contour of an object of
interest- consisting of N points (say clockwise-oriented)
of the form 1

fZ2t g =

�
fXtg
fYtg

�
(1)

or also, in matrix notation

Z2 =

�
X

Y

�
(2)

where t is the arc length, t = 0; 1; :::; N � 1. Each of
the components of fX2

t g and fY
2
t g of fZ

2
t g represents a

discrete periodic unidimensional function of t. If a level
J0 partial 1-D DWT is applied independently to each
component, we can describe the planar curve in terms
of the multiresolution analysis (additive decomposition)
of fX2

t g and fY
2
t g:

Z2 =

�
X

Y

�
=

�
WTWX

WTWY

�

=

�
VTJ0VXJ0

VTJ0VYJ0

�
+

J0X
j=1

�
WT

j WXj

WT
j WYj

�
(3)

where

� W is an N � N real-valued matrix de�ning the
partial DWT [11],

W =

2
66666666664

W1

W2

...
Wj

...
WJ0

VJ0

3
77777777775

� WX;WY are column vectors of length N in which
the �rst (1�2�J0)N elements are the wavelet coef-
�cients, and the last 2�J0N elements are the scal-
ing coeÆcients. In matrix notation, WXj , WYj ,
j = 1; :::; J0 are the �rst J0 subvectors of WX and
WY respectively, and VXJ0 , VYJ0 are the corre-
sponding �nal subvectors. Equivalently, in terms
of details and smooths,

Z2 =

�
SX J0

SYJ0

�
+

J0X
j=1

�
DX j

DY j

�
(4)

1In this paper, fZ2

t
g indicates that Z is bidimensional, not

power operations. The same holds for matrix notation.

where DX j �WT
j WXj , j = 1; :::; J0, are the detail

vectors whose elements are related to changes in the
X component at scale 2j�1, and the smooth SX J0 �
VTJ0VXJ0 represents averages at a scale 2J0 (the same
applies to the Y component).

The wavelet descriptor WD for the planar curve Z2

is de�ned as the coeÆcients of the partial DWT for X
and Y, that is

WD(Z2) =

�
WX

WY

�
(5)

With this de�niton, a multiresolution representa-
tion of the closed curve Z2 has been obtained. This
allows for an eÆcient representation of the shape, be-
cause by using only a certain number of DWT coeÆ-
cients -those that correspond to the coarser scales- we
can approximate the original curve on a scale-by scale
basis. Therefore, if J 0 denotes the level of approxima-
tion (�1 � J 0 � J0 � 1), the reconstructed curve Ẑ2 of
Z2 is given by

Ẑ2 =

�
X̂

Ŷ

�

=

�
VTJ0VXJ0

VTJ0VYJ0

�
+

J0X
j=J0�J0

�
WT

j WXj

WT
j WYj

�

=

�
SX J0

SYJ0

�
+

J0X
j=J0�J0

�
DX j

DY j

�
(6)

where J 0 = �1 corresponds to the coarsest level -
only the smooth term or scaling coeÆcients- and J 0 =
J0� 1 corresponds to perfect reconstruction (by de�ni-

ton,
PJ0

j=J0+1
DX j = 0).

In [3], the derivation of the wavelet descriptor is
based on the analysis of periodized wavelets in the
continuous metric space L2([0; 1]), which leads to the
derivation of (3). As we have shown, the same descrip-
tor can be obtained from the direct use of the DWT,
working only in the discrete domain.

2.1 Properties of the wavelet descriptor

The two properties of wavelets that are exploited for
shape characterization are the capability for detecting
and representing local features, and the energy com-
paction in the transform coeÆcients. The WD has in-
variance, uniqueness and stability properties, assuming
that the parameterization of curves has the same start-
ing point [3]. This assumption is a consequence of a well
known fact: the discrete wavelet transform coeÆcients
and the multiresolution analysis are not invariant with
respect to circular shifts. Due to the scanning-based
method for extraction of the �rst point of the planar
contour, for some particular kind of objects (walking



people), the assumption can be somewhat reasonable
-the upper-most point (in image coordinates) can cor-
respond to the contour starting point-. Methods for se-
lection of the starting point of a contour are discussed
in [2]. In practice, this problem is usually addressed by
maximum correlation schemes.

Given the above assumption and properties, the
WD can be used for recognition purposes based on the
wavelet coeÆcients. A method for creating a geomet-
ric invariant (rotation, translation and change of size)
WD is presented in [3]. Furthermore, these geomet-
ric transformations can be interpreted as global rigid
motion of the object represented by its contour in an
image sequence.

2.2 The Fourier descriptor

A wavelet descriptor is an alternative to a Fourier
descriptor (FD), a shape representation tool that has
been used for years in computer vision and graphics [8].
The de�niton of such a descriptor is straightforward.
For a planar parameterized curve Z2, a FD can be
de�ned as

FD(Z2) =

�
FX
FY

�
(7)

where F denotes the Orthogonal Discrete Fourier
Transform (ODFT). This transform also allows for the
approximation of Z2 in terms of an additive decompo-
sition [11]:

Ẑ2 =

�
X̂

Ŷ

�
=

K0X
j=0

�
DFX ; j
DFY ; j

�
(8)

where DFX ; j and DFY ; j are the jth order Fourier de-
tails for X and Y, and where K 0 = 0; ::::; bN=2c.

3. Object contour generation in natural
images

For multimedia applications, automatic and semi-
automatic segmentation tools can be used for object
contour de�nition. In this paper, we generate moving
object contours in digital video by using the following
procedure:

1. Markov Random Field motion-based segmenta-
tion based on two consecutive frames [5]. A binary
image I representing the moving object is generated.
The extracted motion borders tend to be close to the
real object borders, although there are errors in the
segmentation due to noisy motion estimation.

2. Mathematical morphology processing stage on
the motion segmentation mask to obtain the contour of
the moving object. An opening-closing operation fol-
lowed by a morphological gradient by erosion generate
the object contour.

3. Contour sampling to obtain a small number of
contour points. 256 points for synthetic shapes and
128 for natural contours are used in this paper. A
smaller number is usually enough to describe the origi-
nal curves, depending on the size and shape complexity
of the moving object. However, in this study we use
this number of points to ilustrate the e�ects of the mul-
tiresolution descomposition using a reasonable number
of levels.

a

b

Figure 1: (a) Stefan image; (b) �nal contour.

Fig. 1 shows an example of the extraction contour
procedure in Stefan image sequence. It can be seen that
the contour does not perfectly correspond to the real
frontiers of the object of interest, as accurate segmen-
tation of arbitrary moving objects in complex scenes is
a diÆcult task. There are some evident visual artifacts
in this contour.

4. Experimental analysis

TheWD was eÆciently implemented using the Mal-
lat pyramid algorithm [11]. As test images, we used
synthetic planar curves and also contours of real ob-
jects (Fig. 2). For the computation of the partial
DWT we chose J0 = 6, in order to have 4 coeÆcients
for each component of Ẑ2 at the coarsest level, for the
256-point curves (less than 4 wavelet coeÆcients do not
reconstruct meaningful curves); for the Stefan curve the
coarsest scale corresponds to 2 coeÆcients as N = 128.



4.1 On the selection of the wavelet �lter

We present in Fig. 3 the results of the multireso-
lution approximation using the WD for the Star and
Phantom curves, for J 0 = �1; 0; 1 and 2 (that corre-
spond to 4, 8, 16 and 32 wavelet coeÆcients for each
component of Ẑ2), using three di�erent wavelet �l-
ters: Haar, Daubechies class D(4) and least asymmetric
(LA(8)). In all the results presented in this paper, the x
and y axes represent the horizontal and vertical location
of the planar curves in the image in pixels (for the syn-
thetic curves, this position has been normalized). We
can observe that the well known visual e�ect of each
wavelet �lter is evident: the Haar's blocky but sym-
metric e�ect traduces into a piecewise polygonal ap-
proximation for the 2-D shape; the asymmetric shark
�n e�ect of D(4) is also present, and a less asymmet-
ric and smoother approximation is observed for LA(8).
From the tested �lters, the best approximation is pro-
duced, then, by the LA(8) wavelet, and it requires be-
tween 16 and 32 coeÆcients to properly represent the
original curves (J 0 = 2).
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Figure 2: Test planar curves.(a) Star; (b) Phantom; (c)
Stefan.

We also show in Fig. 3 the results obtained for the
Stefan curve for all levels of reconstruction. Again the
best approximation is obtained with LA(8). For J 0 = 3
(32 wavelet coeÆcients for each component of Ẑ2) we
obtain a contour in which the general shape of the hu-
man body is well described, but some details have been
eliminated (this is advantageous as some of the shape
artifacts have been removed or diminished, see again
Stefan's legs). The superimposition of this approxi-
mated contour with the original image is shown in Fig.
4(b). As a simple quantitative approximation measure,
we computed the mean euclidean distance between the
original contour and its wavelet approximation; the ap-
proximation error is equal to 1.46 pixels. We consider
that this simpli�ed contour could be useful for shape
recognition purposes, and also as the initial point for
a procedure of adjustment of the contour to the real
frontiers of the object of interest using a deformable
contour [6].

In [3], a discussion on the election of the wavelet
bases for shape representation is presented, based on
several criteria. A large number of wavelets are investi-
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Figure 3: Multiresolution approximation using the
WD. For Star and Phantom curves, the �rst four lev-
els are shown using (1)-(2) Haar. (3)-(4) D(4). (5)-(6)
LA(8) wavelet. For Stefan curve, all levels of approxi-
mation are used: (7)-(8) Haar; (9)-(10) LA(8) wavelet.



gated. The authors come to three conclusions: (1) for
symmetric patterns, wavelets with symmetric or almost
symmetric scaling functions (biorthogonal spline-based
or Coiets) produce better results; (2) the Daubechies
class, with a relatively small computational cost, pre-
serves corners in non smooth curves; and (3) bases with
high vanishing moments, like Coiets, produce better
approximations but are more time-consumming. In
fact, even if many natural objects present a certain de-
gree of symmetry, this can be easily broken due to de-
formable motion and change of viewpoint. In the rest
of this paper, we will present results with the LA(8)
wavelet �lter, that represented a good compromise be-
tween computational speed and shape representation.

a

b

Figure 4: (a) Original Stefan contour; (b) approximated
contour using the wavelet descriptor.

For comparison purposes, we show the results ob-
tained using the Fourier descriptor in Fig. 5. The FD
generates symmetric approximations of the curves, and,
from a given level of reconstruction, it produces similar
results to those generated by the WD when an equiv-
alent number of coeÆcients to synthesize the curves is
used 2. A superimposition of the original contour and
its Fourier approximation using 32 coeÆcients is shown
in the last sketch of Fig. 5. The approximation error
in this case is 1.33 pixels, which is slightly smaller than
the wavelet case.

2Note that the shape reconstruction using the WD is done on

a scale-by-scale basis, and on an increasing frequency basis for the

FD. That is to say, no reordering of the transform coeÆcients in

terms of their magnitude has been done up to this moment.
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Figure 5: Reconstruction using the FD. The aproxi-
mations are done using K 0 = 0; 1; 2 and 3. For Stefan,
the superimposition of the original contour (solid line),
and the Fourier approximation for K 0 = 4 (dashed line)
is also shown.
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Figure 6: Approximation using the M largest LA(8)
wavelet coeÆcients. For Phantom, the aproximations
use the same number of coeÆcients as in section 4.1;
for the Stefan curve all levels are shown. In (4) the su-
perimposition of the original contour (solid line), and
the two approximations using the scale-by-scale ap-
proach (dash-dotted line), and the M largest coeÆ-
cients method (dashed line) is shown.



4.2 On the selection of the wavelet coeÆcients

for shape representation

One of the main advantages of theWD over the FD
is its capability of representing and detecting local fea-
tures of a curve in view of the localization property of
wavelets. An improvement in the approximations us-
ing the WD is obtained when the curves are selectively
reconstructed using the DWT coeÆcients of largest en-
ergy. In Fig. 6 we show the results of reconstructing the
test curves using the LA(8) wavelet and the M largest
wavelet coeÆcients, retaining for each case the same
number of transform coeÆcients as in the previous sec-
tion. Each componentWX andWY are independently
thresholded. The process of reconstruction looks quite
di�erent from the one obtained using the scale-by-scale
reconstruction. In Fig. 6.4 we present a superimposi-
tion of Stefan contour and the contours approximated
by both the multiresolution synthesis and theM largest
coeÆcients. It can be seen that the M largest coeÆ-
cients approach provides a more precise approximation.
The approximation error is equal to 1.16 pixels, which
means that we can achieve a greater data compression
by using the M largest coeÆcients approach. On the
other hand, the multiresolution contour obtained in the
previous section is smoother.

Other schemes for the coeÆcient thresholding are
possible. The last test illustrates what happens when
we synthesize the curve using the coeÆcients that cor-
respond to the M largest joint magnitude

WX
2
j;t +WY

2
j;t (9)

The results are shown in Fig. 7. The approximation
error for the case we are analyzing is 1.31 pixels. We
also show a superimposition between the original con-
tour and its M largest joint coeÆcients approximation.
To evaluate the e�ect of the selection method of the
wavelet coeÆcients for shape reconstruction, we show
the reconstruction error as a function of the number of
coeÆcients using theM independent largest coeÆcients
method and the M largest joint coeÆcients approach.
The performance using the independent largest coeÆ-
cients is better than the corresponding to the joint case.
For comparison purposes, we also show the described
Fourier descriptor performance, which is in general infe-
rior than the wavelets methods. This �gure can be used
as a simple quantitative rate-distorsion indicator. For
instance, we see that with 20 coeÆcients using the M
independent largest coeÆcients method, we obtain a re-
construction error of about 2 pixels. We also see that, in
order to obtain the same error, we need about 25 coef-
�cients using the M largest joint coeÆcients approach,
and about 27 using the Fourier descriptor. When using
more than 30-35 coeÆcients, all methods perform in a

similar way. It is evident that these experiments are
not completely conclusive. We are currently investigat-
ing the correlation between local 2D shape and wavelet
coeÆcients using the WD.
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Figure 7: Approximation using the M joint largest
WX

2
j;t+WY

2
j;t wavelet coeÆcients, for all levels of recon-

struction. In (3) we superimpose the original contour
(solid line), and the approximation using this approach
(dashed line). In (4) we show a comparison of the re-
construction error for a variable number of coeÆcients
using the M independent largest coeÆcients (dashed
line), the M largest joint coeÆcients (solid line), and
the Fourier descriptor (dash-dotted line).

5. Use of the wavelet descriptor in mul-
timedia applications

There are several applications of the WD in a mul-
timedia framework, as a compact shape representation
tool for complex object description and characterization
in digital video. Three research lines in which the WD
can �nd applications related to the content-based ap-
proach proposed in MPEG-4 and prevailing in MPEG-7
standards are:

1. The WD allows for the modeling of time-varying
planar shapes, as we can divide this dynamic be-
haviour into global rigid motion and local non-rigid
deformations. With respect to this local char-
acterization, in [3] it was proposed a deformable
wavelet descriptor in which the wavelet coeÆcients
-modeled as random variables- are used to adjust
an initial contour to the real borders of an ob-
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Figure 8: Application of the WD for retrieval func-
tions in video databases. Two video commands (hand1
and hand2) are shown in (a)-(b) and (e)-(f). The con-
tours ((d), (h)) extracted from the motion segmentation
masks ((c), (g)) are represented by the WD. In (i) and
(j) the reconstruction for the four �rst levels is shown.

ject of interest based on optimization techniques
(bayesian methods). The main advantage of us-
ing the WD is that the adjustment of parameters
can be hierarchically implemented, based on the
multiscale representation: coarser scales are used
for the �rst adjustment stages, and then local de-
formations are handled at �ner resolutions. How-
ever, up to this moment, only very simple object
shapes have been analyzed under this perspective.
Its applicability to more complex objects needs to
be validated.

2. For model object detection, segmentation and
tracking, the features provided by the WD could
be introduced in learning deformable models [2].
Typical schemes use the position of the discrete
contour points to compute a shape vector, by ap-
proximating the contour by a parametric curve
(B-spline). These shape vectors are normalized
and used as training shapes for Principal Compo-
nent Analysis (eigenshapes). A di�erent possibility
would be to use theWD as the features from which
the shape model is learned.

3. The WD can also �nd applications in generic
model-free content-based video retrieval. In Fig.
8 we present some of our current experiments. A
set of hand commands for human-machine com-
munication is depicted in a video database (Fig.
8(a)-(b), (e)-(f)). The procedure described in this
paper -generation of contour of the moving object,
computation of the wavelet descriptor- is applied
to each of the video sequences in the database.
N = 128 points are extracted for each contour.
A good representation of the hand shapes, useful
for shape-based retrieval, is obtained with only a
few wavelet coeÆcients. The multiresolution re-
construction for two hand commands is shown in
Fig. 8(i)-(j) for J 0 = �1; 0; 1 and 2 (that corre-
spond to 2, 4, 8, and 16 wavelet coeÆcients for
each component of Ẑ2). The optimum number of
coeÆcients might depend on the complexity of the
indexed command alphabet. In Fig. 9 we show
the contour recontruction error as a function of
the number of coeÆcients, for the two hands se-
quences. We notice again that the M independent
largest coeÆcient method produces a more com-
pact representation. Issues on retrieval eÆciency
using the WD by itself and in combination with
other descriptors (object color, motion, described
trajectory along the video sequence) are part of our
current work.
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Figure 9: Approximation of (a) hand1 and (b) hand2

contours using the WD as a function of coeÆcients
using the M independent largest coeÆcients (dashed
line), the M largest joint coeÆcients (solid line).

6. Conclusions

We analyzed a planar curve descriptor based on
the DWT, as a tool for compact object representation
in multimedia applications. Our experiments included
testing of di�erent wavelet �lters on natural and syn-
thetic 2-D contours, and a comparison between three
shape reconstruction methods (multiresolution, M in-
dependent x and y largest coeÆcients and M joint
largest coeÆcients). A comparison with a well known
Fourier shape descriptor was also performed. From the
experiments, we conclude that the use of the M in-
dependent largest coeÆcient methods produces more
compact representations, although the precise corre-
spondence between wavelet coeÆcient magnitudes and
local changes in shape is still a problem to be ad-
dressed. Our current work includes a thorough quanti-
tative evaluation of the compactness and performance
of the wavelet descriptor in video retrieval applications.
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