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Abstract

The statistical tools used to compare images are often based
on multivariate statistics and use images as observations.
This approach does not take into account the spatial and
dependence structures in the images. Here we follow an-
other approach in the sense that the number of pixels in the
images is the number of observations. We also take into
account spatial and dependence structures by modelling im-
ages with Gibbs random fields with nearest-neighbors inter-
actions. The idea of the proposed method of comparison of
images is to model the images by Gibbs random fields with
a finite number of parameters and to test equality of param-
eters between the pooled images of each group. We obtain a
test statistic that is easy to calculate, and the limiting distri-
bution of the statistic is a chi-square distribution. Applica-
tions to handwrittens signatures and pattern recognition are
presented.

1 Introduction

In many applications one wants to compare images of the
same object. For example, one is interested in comparing
fingerprints, handwritten signatures, radar images, etc.

The statistical tools used to compare images are often
based on multivariate statistics and use images as observa-
tions. This approach does not take into account the spa-
tial and dependence structures in the images. Here we fol-
low another approach in the sense that the number of pixels
in the images is the number of observations. We also take
into account spatial and dependence structures by modelling
images with the so-called (finite) Gibbs random fields with
nearest-neighbors interactions. These models are very popu-
lar in Statistical Physics. They have also been used by many
authors for denoising images using a Bayesian approach; see
for example [2] or [3].
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In what follows we assume that the images are compa-
rable in the sense that they have the same size and the same
orientations (e.g. [1]). The idea of the proposed method
of comparison of images is to model the images by Gibbs
random fields with a finite number of parameters and to test
equality of parameters between the pooled images of each
group.

In Section 2, images models with an arbitrary number
of gray levels are introduced. Section 3 deals with meth-
ods for estimating the parameters of these images and an
appropriate test statistic is defined. Section 4 is devoted to
examples of applications for binary images, while the Ap-
pendix contains the proof of the asymptotic behavior of the
proposed test statistic together with efficient Monte-Carlo
Markov Chain methods for generating images.

2 Gibbs random fields

2.1 Notations

The set of pixels will be denoted byΛ. It is assumed that
Λ is a rectangle ofZZ2. The “color” of the pixel at sitex
will be denoted byσ(x) ∈ C ⊂ {0, 1, . . .}, x ∈ Λ, where
a white pixel has value0, and a black pixel has value1.
SetσA = CA = {σ(x); x ∈ A}. For example, for black
and white images or binary images,C = {0, 1}. For gray
level images,C = {0, 1, . . . g − 1} andg is the number of
gray levels. For sake of simplicity, extend everyσ so that
σ(x) = 0 wheneverx 6∈ Λ.

If one wants to use statistics, one has to define an inter-
esting parameterized family of distributions on the set of all
possible imagesΩ = CΛ. The desirable features of random
images are

• relatively few parameters;

• “Markov property”: the law of the color of a pixel at
sitex given all other pixels should depend only on the
colors of the pixels in a given neighborhoodNx of x;

• “stationarity”: Nx = x + N , for anyx ∈ Λ;



• each possible image has a positive probability.

One such family is given by Gibbs random fields intro-
duced in the next subsection.

2.2 Gibbs random fields

Throughout the rest of the paper let±e1, ±e2,
. . . ,±em be fixed vectors with integer components.
Let α = (α1, . . . , αg−1) and β = (β1, . . . , βm). Set
α0 = 0. These vectors will serve to define the neighbors of
a pixel andα andβ will be parameters of the family of laws
for the images.

For every(α, β), the probability of an imageσ = σΛ is
defined by

PΛ,α,β(σ) = eHΛ,α,β(σ)
/

ZΛ,α,β ,

where

HΛ,α,β(σ) =
∑
x∈Λ

α(σ(x)) +
m∑

l=1

βl

∑
x∈Λ

σ(x)σ(x + el),

and whereZΛ,α,β is the normalizing constant defined by

ZΛ,α,β =
∑
ω∈Ω

eHΛ,α,β(ω).

Then one can check that for any finite subsetA of Λ, one
has

PΛ,α,β

{
σA|σΛ\A

}
= eHΛ,Λ\A(σΛ)

/
ZA,σΛ\A

,

whereZA,σΛ\A
=

∑
σA∈{0,1}A

e
HA,σΛ\A

(σA), and

HA,σΛ\A
(σA) =

∑
x∈A

α(σ(x))

+
m∑

l=1

βl

∑
{x,x+el}⊂A

σ(x)σ(x + el)

+
m∑

l=1

βl

∑
x∈A,x+el∈Λ\A

σ(x)σ(x + el)

+
m∑

l=1

βl

∑
x∈A,x−el∈Λ\A

σ(x)σ(x − el).

In particular,
Pσ,α,β,x{ω(x) = j}

= PΛ,α,β{ω(x) = j | ω(y) = σ(y), ∀y 6= x}

=
eαj+j

∑
m

l=1
βlv(σ,x,l)

g−1∑
k=0

eαk+k
∑m

l=1
βlv(σ,x,l)

, (2.1)

wherev(σ, x, l) = σ(x + el) + σ(x− el). The probabilities
defined by (2.1) are called the local specifications of the
Gibbs random field.

REMARK. The parameterβ can be interpreted as a depen-
dence parameter in the sense that if it equals zero, then the
pixels at different sites are independent and

P{σ(x) = j} = eαj

/(g−1∑
k=0

eαk

)
, 0 ≤ j ≤ g − 1.

3 Comparison of images

Using the Gibbs random fields models, we can compare
images by first estimating the parameters of the respective
groups and then perform an hypothesis test. Let us start with
parameters estimation.

3.1 Parameters estimation

There are many methods that can be used to estimate the
parameters of a statistical model, but the two most efficient
ones are the maximum likelihood method and the maximum
pseudo-likelihood method.

In our setting, the maximum likelihood method con-
sists is finding the values(α, β) maximizing the probability
PΛ,α,β(σ), whereσ is the observed image. Unfortunately
sinceZΛ,α,β has not a closed form except in the indepen-
dence case, it would take years to compute this constant for
images having10000 pixels. Therefore one cannot apply the
maximum likelihood method directly. A similar method is
proposed in [8]. To compute the constant term, the author
relies on Monte-Carlo Markov Chain methods. It works as
follows. MaximizingPΛ,α,β(σ) is the same as maximizing
log PΛ,α,β(σ). Hence using calculus it amounts to solve the
following equations in(α, β):

p̂j =
1
|Λ|

∑
x∈Λ

II{σ(x) = j} =
1
|Λ|
∑
x∈Λ

PΛ,α,β{ω(x) = j},

1 ≤ j ≤ g − 1, and

µ̂l =
1
|Λ|

∑
x∈Λ

σ(x)σ(x + el)

=
1
|Λ|

∑
x∈Λ

EΛ,α,β (ω(x)ω(x + el)) ,

1 ≤ l ≤ m.

Once these probabilitities and expectations are estimated
using Monte-Carlo methods (see appendix), one can use re-
cursive methods to solve the equations. However the cal-
culation time is enormous. To overcome this difficulty, we



propose to use the maximum pseudo-likelihood method. In-
stead of maximizingPΛ,α,β(σ), one maximizes the prod-
uctL of the local specifications, which is called the pseudo-
likelihood, that is

L = Lσ(α, β) =
∏
x∈Λ

Pσ,α,β,x{ω(x) = σ(x)}. (3.2)

Note that maximizingL is the same as maximizing

L = Lσ(α, β) =
1
|Λ| log L

=
1
|Λ|

∑
x∈Λ

log Pσ,α,β,x{ω(x) = σ(x)}. (3.3)

REMARK. Under the independence hypothesis, that is
β = 0, the maximum likelihood and maximum pseudo-
likelihood estimates ofα are the same and are given by
α̂j = log(p̂j/p̂0), where p̂j is the proportion of pixels
having colorj, 0 ≤ j ≤ g − 1.

Using calculus, it is easy to see that the values of(α̂, β̂)
that maximize the pseudo-likelihood must satisfy the fol-
lowing equations:

∂L
∂αj

= p̂j − 1
|Λ|
∑
x∈Λ

Pσ,α,β,x{ω(x) = j} = 0, (3.4)

1 ≤ j ≤ g − 1, and

∂L
∂βl

= ml − 1
|Λ|
∑
x∈Λ

Eσ,α,β,x{ω(x)}v(σ, x, l) = 0, (3.5)

whereml =
1
|Λ|

∑
x∈Λ

σ(x)v(σ, x, l), 1 ≤ l ≤ m.

Note that the Hessian matrixH = Hσ(α, β) of L satis-

fiesH =
(

H11 H12

H>
12 H22

)
, where

(H11)ij =
∂2L

∂αi∂αj

=




− 1
|Λ|
∑
x∈Λ

Pσ,α,β,x{ω(x) = i}

× [1 − Pσ,α,β,x{ω(x) = i}] , i = j,
1
|Λ|

∑
x∈Λ

Pσ,α,β,x{ω(x) = i}

×Pσ,α,β,x{ω(x) = j}, i 6= j,

1 ≤ i, j ≤ g − 1,

(H12)ij =
∂2L

∂αi∂βj

= − 1
|Λ|

∑
x∈Λ

Pσ,α,β,x{ω(x) = i}v(σ, x, j)

×[i − Eσ,α,β,x{ω(x)}],

1 ≤ i ≤ g − 1, 1 ≤ j ≤ m, and

(H22)ij =
∂2L

∂βi∂βj

= − 1
|Λ|
∑
x∈Λ

[
Eσ,α,β,x{ω2(x)}

−E2
σ,α,β,x{ω(x)}] v(σ, x, i)v(σ, x, j),

1 ≤ i, j ≤ m.

REMARK. Let ζω,σ,x be the(g− 1+m)-dimensional vector
defined by

(ζω,σ,x)i =
{

II{ω(x) = i}, 1 ≤ i ≤ g − 1,
ω(x)v(σ, x, i + 1 − g), g ≤ i ≤ g − 1 + m,

(3.6)
where IIA is the indicator function of the setA, that is

IIA(y) =
{

1 if y ∈ A
0 otherwise

. One can see that the gradient

of L is given by

∇L =
(

∂L
∂α1

, . . . ,
∂L

∂αg−1
,

∂L
∂β1

, . . . ,
∂L
∂βm

)

=
1
|Λ|
∑
x∈Λ

{ζσ,σ,x − Eσ,α,β,x(ζω,σ,x)}

= (p̂, m) − 1
|Λ|

∑
x∈Λ

Eσ,α,β,x(ζω,σ,x). (3.7)

Moreover the Hessian matrixH of L can also be written in
the form

H = − 1
|Λ|
∑
x∈Λ

[
Eσ,α,β,x(ζxζ>x )

−Eσ,α,β,x(ζx)Eσ,α,β,x(ζ>x )
]
. (3.8)

It follows from representation (3.8) thatH is negative
definite provided the linear span generated by the vectors
{(v(σ, x, 1), . . . , v(σ, x, m)); x ∈ Λ} has dimensionm.

3.2 Estimation of parameters for a group of
images

If we havek ≥ 1 independent imagesσ1, . . . , σk of the
same object, one can estimate the common parameters
(α, β) by finding the roots of the pooled functionL(k)(α, β)
defined by

L(k)(α, β) =
k∑

i=1

Lσi(α, β),

whereLσi is the function defined by (3.3) calculated with
the imageσi.



3.3 Test statistic

Suppose one hask images of an object and one observesj
new images numberedk + 1 to k + j. To compare images,
one just have to test the null hypothesisH0 : (αold, βold) =
(αnew, βnew), that is the parameters of the newj images are
the same as the one of thek images.

The usual pseudo-likelihood ratio test has not a nice
asymptotic distribution, so we propose a related statisticR
defined by

R =
|Λ|

1
j + 1

k

(θ̂ − θ?)>Î(V̂ )−1Î(θ̂ − θ?),

where θ̂ and θ? are respectively the estimations ofθ =
(α, β) for thek old images and the newj images,Sσ,x,θ =
ζσ,σ,x − Eσ,α,β,x(ζω,σ,x), x ∈ Λ,

Î =
1

k|Λ|
k∑

i=1

∑
x∈Λ

Sσi,x,θ̂ S>
σi,x,θ̂

,

Ĵl =
1

k|Λ|
k∑

i=1

∑
x∈Λ

Sσi,x,θ̂ S>
σi,x+el,θ̂

,

1 ≤ l ≤ m, andV̂ = Î + 2
m∑

l=1

Jl.

It follows that if the conditions in Subsection 6.1 are
satisfied, then for large values of|Λ|, R behaves asymptot-
ically like a Chi-square random variable withg − 1 + m
degrees of freedom.

The p-value of a test statistic having valueR is thus ap-
proximated byP (χ2

g−1+m > R). The null hypothesis is
rejected when that p-value is too small.

4 Examples of applications

For the binary images treated in this section, we have chosen
a model with eight neighbors at every interior sites, as seen
in figure 1.

0 1

3 24
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6 7 8

0 1

3 24

1

2 3 4

Figure 1: Neighbors of pixel at site0 (left), pairs of neigh-
bors (right).

In the case of binary images ,g = 2, (α, β) =
(α, β1, β2, β3, β4), and the local specifications are given by:

Pσ,α,β,x{ω(x) = σ(x) | ω(y) = σ(y), ∀y 6= x}

= 1
/(

1 + e
(1−2σ(x))

[
α+
∑4

i=1
βi{σ(x+ei)+σ(x−ei)}

])
,

wheree1 = (1, 0), e2 = (1, 1), e3 = (0, 1), e4 = (−1, 1),
ei+4 = −ei, 1 ≤ i ≤ 4 are the eight neighbors of(0, 0);
therefore the eight neighbors ofx arex + ei, i = 1, . . . , 8.

4.1 Application of the method with simulated
images

For this simulation, images have been generated using the
Gibbs sampler method explained in Subsection 6.2 of the
Appendix. We generated 1000 pairs of100 × 100 images
with different parameters and we compared the t wo images
of each pair by calculating our proposed test statistic R, and
we rejected the null hypothesis that the parameters are the
same ifR > 11.071. This is the decision rule for a5% level
test.

The results are given in the table below. One can
see that the chi-square approximation of the statistic is
quite good since the rejection rate is5.8% for images
with the same parameters, which is very close to the true
value of5%. For the first image, the value ofθ is always
(−0.3, 0.1,−0.4, 0.2, 0.05).

θ for second image Proportion of rejections
(−0.30, 0.1,−0.4, 0.2, 0.05) 0.058

(−0.35, 0.1,−0.4, 0.2, 0.05) 0.256

(−0.40, 0.1,−0.4, 0.2, 0.05) 0.675

(−0.30, 0.2,−0.4, 0.2, 0.05) 0.810

These results indicates that the test has a very power
since small differences in parameters are easily detected.

4.2 Comparison of handwritten signatures

For the second application, we considered handwritten
signatures from the same person and we compared the first
one with the other ones. Using a level of5%, only the last
one was rejected, having a valueR = 17.92. The associated
p-value is0.0031. One can see that the image is somewhat
different from the other ones so it is not surprising to reject
the null hypothesis in that case.



Figure 2: Four handwritten signatures of Alain Chalifour.

4.3 Pattern recognition

To illustrate again the method, let us compare each of the
last three letters in Figure 3 with the first one.

Figure 3: Four different fonts for letter A.

The respective values of the test statistic are:104.46,
102.66, and44.63. Therefore each time the null hypothesis
is rejected, using a level of5%.

5 Conclusion

We proposed a new statistical method for comparing two
groups of images. The idea is to model images using pa-
rameterized families of probability distributions and to test
equality of parameters of the respective groups. This method
has the advantage of being easy to implement and also have
a very good discriminating power, as seen by simulations
and comparisons of real binary images. We believe that our
method could be very usefull in comparing radar images
with true images in geomatics, or to find fingerprints that
match well.

6 Appendix

In this appendix, we first prove that the limiting distribution
of the test statistic is chi-square and then we state some effi-
cient ways of generating Gibbs random fields.

6.1 Asymptotic behavior of the test statistic

Let θ = (α, β) be fixed and letµ be an ergodic stationary
Gibbs probability measure with local specifications given by
(2.1). SetSσ,x,θ = ζσ,σ,x − Eσ,α,β,x(ζω,σ,x), x ∈ Λ.

Since we used the maximum pseudo-likelihood method
for estimating parameters, it is tempting to use the difference
of the log-pseudo-likelihoodsas a test statistic as it is done in
[6, Theorem, p. 158] for the maximum likelihood method.
However, because of the dependence in the models, it does
not work. Instead we can use a quadratic form based on the
differences of parameters in the two groups.

To make it clear, set

Î =
1

k|Λ|
k∑

i=1

∑
x∈Λ

Sσi,x,θ̂ S>
σi,x,θ̂

,

and

Ĵl =
1

k|Λ|
k∑

i=1

∑
x∈Λ

Sσi,x,θ̂ S>
σi,x+el,θ̂

,

1 ≤ l ≤ m. Further set̂V = Î + 2
m∑

l=1

Jl.

If I = E
(
Sσ,x,θS

>
σ,x,θ

)
and

V = I+
m∑

l=1

E
(
Sσ,x,θS

>
σ,x+el,θ

)
+

m∑
l=1

E
(
Sσ,x+el,θS

>
σ,x,θ

)
.

It follows from [5] that |Λ|1/2
(
θ̂ − θ

)
≈

Nl(0, I−1V I−1/k). Let θ? estimated using thej new
images. Then|Λ|1/2 (θ? − θ) ≈ Nl(0, I−1V I−1/j).

SinceÎ and V̂ converges almost surely toI andV re-
spectively, it follows that

|Λ|
1
j + 1

k

(θ̂ − θ?)>Î(V̂ )−1Î(θ̂ − θ?)

converges in law to a random variable having chi-square dis-
tribution with r = g − 1 + m degrees of freedom.

6.2 Monte-Carlo Markov Chain methods

It is sometimes impossibly difficult to generate directly ob-
servations with a given law. The idea behind Monte-Carlo
Markov Chain methods is the following: one generates a
Markov chain where the stationary measure is exactly the
desired law. Then one runs the Markov chain for some time



and one takes the last observation of the Markov chain. A
nice introduction of these methods is [7]; see also [4].

We will now describe the algorithms we used for the gen-
eration of gray levels images.

6.2.1 Metropolis-Hastings algorithm

Let ωn = σ ∈ Ω = {0, 1}Λ be the configuration at time
n. Then the next configurationωn+1 at time n + 1 is
determined in the following way:

• choose a pixelx at random inΛ;

• choose colorj ∈ {0, 1, . . . , g−1}\j0 at random, where
j0 = ωn(x);

• choose a numberU in the interval(0, 1);

• if U ≤ eαj−αj0+(j−j0)
∑m

l=1
βlv(ωn,x,l), then

ωn+1(x) = j and ωn+1(y) = ωn(y), pour tout
y 6= x, wherev(σ, x, l) = σ(x + el) + σ(x − el);
otherwiseωn+1 = ωn.

6.2.2 Gibbs sampler algorithm

For this algorithm, one must enumerate the points inΛ in
as periodic way, that isx1, x2, . . ., in such a way thatΛ =
{x1, . . . , xp} andxn+p = xn, wherep = |Λ|. The new
configurationωn+1 is determined in the following way:

• chooseU at random in the interval(0, 1);

• if Pωn,α,β,xn+1{(ω(xn+1) ≤ j − 1} < U ≤
Pωn,α,β,xn+1{(ω(xn+1) ≤ j}, for some0 ≤ j ≤ g−1,
set ωn+1(xn+1) = j and ωn+1(y) = ωn(y) for all
y ∈ Λ \ {xn+1}. HerePωn,α,β,xn+1{(ω(xn+1) = j}
is given by formula (2.1).

REMARK. Note that the initial configuration in not impor-
tant. However there are two interesting choices:ω0 = 0, or
the color of each pixel ofω0 is determined independently

with P (ω0(x) = j) = eαj

/∑g−1
k=0 eαk .

In the caseβ = 0, the Gibbs sampler algorithm is su-
perior to the Metropolis-Hastings algorithm since the image
ωp has the right law, which is not necessarily the case for
the Metropolis-Hastings algorithm because of the sampling
with replacement of the pixels in the latter case.
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