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Statistical comparison of images using Gibbs random fields
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Abstract In what follows we assume that the images are compa-
rable in the sense that they have the same size and the same
The statistical tools used to compare images are often baggientations (e.g. [1]). The idea of the proposed method
on multivariate statistics and use images as observatiomd.comparison of images is to model the images by Gibbs
This approach does not take into account the spatial angndom fields with a finite number of parameters and to test
dependence structures in the images. Here we follow agquality of parameters between the pooled images of each
other approach in the sense that the number of pixels in tgeoup.
images is the number of observations. We also take into In Section 2, images models with an arbitrary number
account spatial and dependence structures by modelling iwk gray levels are introduced. Section 3 deals with meth-
ages with Gibbs random fields with nearest-neighbors intepds for estimating the parameters of these images and an
actions. The idea of the proposed method of comparison eppropriate test statistic is defined. Section 4 is devoted to
images is to model the images by Gibbs random fields wittxamples of applications for binary images, while the Ap-
a finite number of parameters and to test equality of pararpendix contains the proof of the asymptotic behavior of the
eters between the pooled images of each group. We obtaipmposed test statistic together with efficient Monte-Carlo
test statistic that is easy to calculate, and the limiting distriMarkov Chain methods for generating images.
bution of the statistic is a chi-square distribution. Applica-
tions to handwrittens signatures and pattern recognition are . .
presented. 2 Gibbs random fields

2.1 Notations

1 Introduction The set of pixels will be denoted by. It is assumed that
A is a rectangle ofZ2. The “color” of the pixel at siter

In many applications one wants to compare images of thgj|| be denoted byr(z) € C ¢ {0,1,...}, 2 € A, where

same object. For example, one is interested in compariggwhite pixel has valu®, and a black pixel has value

fingerprints, handwritten signatures, radar images, etc.  Setg, = C4 = {o(z);2 € A}. For example, for black
The statistical tools used to compare images are oftetnd white images or binary images,= {0,1}. For gray

based on multivariate statistics and use images as obserksel imagesC = {0,1,...g — 1} andg is the number of

tions. This approach does not take into account the spgray levels. For sake of simplicity, extend everyso that

tial and dependence structures in the images. Here we feltz) = 0 whenever: ¢ A.

low another approach in the sense that the number of pixels |f one wants to use statistics, one has to define an inter-

in the images is the number of observations. We also takssting parameterized family of distributions on the set of all

into account spatial and dependence structures by modellipgssible image® = C*. The desirable features of random
images with the so-called (finite) Gibbs random fields withmages are

nearest-neighborsinteractions. These models are very popu-
lar in Statistical Physics. They have also been used by manye relatively few parameters;

authors for denoising images using a Bayesian approach; see ]
for example [2] or [3]. e “Markov property”: the law of the color of a pixel at

site x given all other pixels should depend only on the
“Work supported in part by the Fonds Institutionnel de Recherche and ~ colors of the pixels in a given neighborhodg of z;

by the Natural Sciences and Engineering Research Council of Canada, ) ]
Grants No. OGP0042137. e “stationarity”: N, = = + N, foranyz € A;
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e each possible image has a positive probability.

One such family is given by Gibbs random fields intro-,

duced in the next subsection.

2.2 Gibbs random fields

Throughout the rest of the paper
., *e, be fixed vectors with
Let o = (ai1,...,04-1) and g =

|&1’:61, :|:62,

Set

(ﬁla' "767n)-

ag = 0. These vectors will serve to define the neighbors of
a pixel ando: and 3 will be parameters of the family of laws

for the images.

For every(«
defined by

,3), the probability of an image = o, is

Praplo) = GHA’("ﬁ(U)/ZA,a,ﬁ,

where

m

> alo +Zﬁzz

TEA =1 TEA

Hp o p(0) = olx +e),

and whereZ, , g is the normalizing constant defined by
Znap =Y eMhost.
weN

Then one can check that for any finite subdedf A, one
has

Proop {O'A|0'A\A} — eHA.A\A(UA)/ZAJ_A\A’

whereZa o, = 3 eHaenalea) gng
ca€{0,1}4

HA:UA\A(JA) = Za(a(m))
z€A

m

+> 8 Y

=1 {z,z+e}CA

+Zﬁz Z

=1 z€A,x+e EA\A

+Zﬁz Z

=1 zcAzxz—e€€A\A

o(x)o(z + ep)
o(x)o(x + ep)

o(z)o(x —ep).

In particular,
Foap2{w(z) = 7}

= Praplel@) =jlwly) =oly), vy # z}
e i Y Fro(o.a,l)

= — , (2.1)

Z eak+k Zm Biv(o,z,l)
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integer components.

wherev(o, z,1) = o(x 4 ¢;) + o(x — ¢;). The probabilities

defined by (2 1) are called the local specifications of the
Gibbs random field.

REMARK. The parametef can be interpreted as a depen-
dence parameter in the sense that if it equals zero, then the
pixels at different sites are independent and

g—1
Plo(x) = j} =% / (Ze“k) ,0<j<g—1.
k=0

3 Comparison of images

Using the Gibbs random fields models, we can compare
images by first estimating the parameters of the respective
groups and then perform an hypothesis test. Let us start with
parameters estimation.

3.1 Parameters estimation

There are many methods that can be used to estimate the
parameters of a statistical model, but the two most efficient
ones are the maximum likelihood method and the maximum
pseudo-likelihood method.

In our setting, the maximum likelihood method con-
sists is finding the valugsy, ) maximizing the probability
Py .«3(0), whereo is the observed image. Unfortunately
sinceZ, «,3 has not a closed form except in the indepen-
dence case, it would take years to compute this constant for
images having0000 pixels. Therefore one cannot apply the
maximum likelihood method directly. A similar method is
proposed in [8]. To compute the constant term, the author
relies on Monte-Carlo Markov Chain methods. It works as
follows. Maximizing Py «,5(c) is the same as maximizing
log Pa.«,3(c). Hence using calculus it amounts to solve the
following equations in«, B):

D = I{o(z) =j} Prop{w(z

1<j<g-1and

1<li<m.

Once these probabilitities and expectations are estimated
using Monte-Carlo methods (see appendix), one can use re-
cursive methods to solve the equations. However the cal-
culation time is enormous. To overcome this difficulty, we



propose to use the maximum pseudo-likelihood method. In-<i<¢g—1,1 < j <m, and

stead of maximizingPa (o), one maximizes the prod-

uct L of the local specifications, which is called the pseudo- (Ha)ij

likelihood, that is

L=1L, = [[ Prapaiw@) =o@)}. (3.2
TEA
Note that maximizing_ is the same as maximizing
L = Lyla,p)=1=logL
IAI
1
= m21ong7a7g7x{w(m)zo(a:)}. (3.3)
zEA
REMARK. Under the independence hypothesis, that i

{8 = 0, the maximum likelihood and maximum pseudo

likelihood estimates ofv are the same and are given by

B 0L
3@‘3@'
= Z oo p,2 {0’ ()}
1A
€A
_Eg,a,ﬁ,x{w(m)}] U(Ua z, i)U(Ua J),j),
1<i4,j<m.
REMARK. Let(, » - be the(g — 1+ m)-dimensional vector

defined by

&; = log(p;/po), wherep; is the proportion of pixels where I, is the indicator function of the set, that is

having colorj, 0 < j < g — 1.

Using calculus, it is easy to see that the value&iof3)
that maximize the pseudo-likelihood must satisfy the fol
lowing equations:

oL

a ﬁ Zpaozﬁzr{w —j}207 (34)

TEA

[A]

1<j<g-1,and

oL
—— =m Esapz{w v(o,z,l) =0, (3.5
B, L= |A|a;\ 0B, { ( )} ( ) (3.5)
wherem; = — Z v(o,z,1),1 <l <m.
|A| zEA
Note that the Hessian matrt{ = H,(«, 3) of £ satis-
: Hyy Hip
fiesH = , Where
(&t )
0L
Hi)y =
( 11)/1 80@80@
P [e'N x
|A| Z o,,0, {W }
zEA ' ' ]
_ [1_Pcfa,,3,m{w( ) _Z}]a t=17
Z Pyapo{w(@) =i}
xeA
XPa,a,ﬁ,z{W( ) =i} i # 7,
1<i,j<g-1,
0L
(Hi2)ij =
I 80@-8@-
= P [ x =1 sy j
|A| % o,a,3, {w Z}U(U T .7)

x[i = Eg,a,8,01w(®)},
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?C )i = IHw(x) =i}, I<i<g-—1,
~SwdBET  y(x)v(o,z,i+1—g), g<i<g—1+m,
(3.6)
|1 ifyeA .
IA(y) = 0 otherwise " One can see that the gradient

of L is given by

[A]

oL _oc o
=

Z{Cﬂax_

zEA
|A| ZEaa,Bac Cwa;r)

z€EA

o
Bm

o,a, 3,z (Cw,a,ac)}

VL

)

(B, m 3.7)

Moreover the Hessian matri{ of £ can also be written in
the form

= |A| Z 0,3,z Ca: )
z€EA
_Eo’,a,,@,m(Cz)Ea,a,ﬁ,m(CJ)] . (38)

It follows from representation (3.8) thall is negative
definite provided the linear span generated by the vectors
{(w(o,z,1),...,v(c,z,m));x € A} has dimensiom..

3.2 Estimation of parameters for a group of
images

If we havek > 1 independent images, ..., o of the

same object, one can estimate the common parameters

(v, 3) by finding the roots of the pooled functia®) (o
defined by

)

£0(a, 8) =

where L, is the function defined by (3.3) calculated with
the imager;.



3.3 Test statistic In the case of binary imagesg = 2, (o,3) =

] ) (a, B1, B2, B3, B4), and the local specifications are given by:
Suppose one hdsimages of an object and one obseryes

new images numberégd+ 1 to k& + j. To compare images, _ _

one just have to test the null hypothesls : (aod, Bord) = Frapadw) = ol@) | wly) = oly), vy # o}

(Qnew, Brew), that is the parameters of the ngwnages are ,

the same as the one of themages. _ 1/ (1 + o(1-20(2)) [(H—Z_l ﬂi{ﬂ(ﬂf"!‘ei)“l‘ﬂ(ﬁf—ei)}])
The usual pseudo-likelihood ratio test has not a nice

asymptotic distribution, so we propose a related statigtic

)

. wheree; = (1,0), e2 = (1,1),e3 = (0,1),e4 = (—1,1),
defined by Cipa = —ei,(l g) i < 4(are )the eigr(1t ne)ighbors( 0@0,0;;
A . . therefore the eight neighbors efarex +¢;,i =1,...,8.
R= 1+—1(9 — 0T I(V)TH(0 - 6%),
J k
4.1 Application of the method with simulated
whered and 6* are respectively the estimations 6f = images
(o, B) for the k old images and the neyimages,S, .9 =
Coor — Foapa(Cooz) T €A, For this simulation, images have been generated using the
Gibbs sampler method explained in Subsection 6.2 of the
Appendix. We generated 1000 pairs1@f0 x 100 images
k|A| Z Z o120 w 4 with different parameters and we compared the t wo images
i=1 z€A of each pair by calculating our proposed test statistic R, and
we rejected the null hypothesis that the parameters are the
same ifR > 11.071. This is the decision rule for &% level
l k|A| Z Z oiz,0 Ul,ere;,G’ test.
i=1 z€EA
o The results are given in the table below. One can
1<li<m,andV =1+ 22 J. see that the chi-square approximation of the statistic is
=1 quite good since the rejection rate 5s8% for images

It follows that if the conditions in Subsection 6.1 aréyjith the same parameters, which is very close to the true

satisfied, then for large values pf|, 1z behaves asymptot- yajue of5%. For the first image, the value éfis always
ically like a Chi-square random variable with— 1 +m  (_0.3,0.1, -0.4,0.2,0.05).

degrees of freedom.

# for second image Proportion of rejections
The p-value of a test statistic having valRas thus ap-  (—0.30,0.1, —0.4,0.2,0.05) 0.058
proximated byP(Xf],Hm > R). The null hypothesis is
rejected when that p-value is too small. (—0.35,0.1,-0.4,0.2,0.05) 0.256
(—0.40,0.1,—-0.4,0.2,0.05) 0.675
4 Examples of applications
(—0.30,0.2,—0.4,0.2,0.05) 0.810

For the binary images treated in this section, we have chosen

a model with eight neighbors at every interior sites, as seen These results indicates that the test has a very power
in figure 1. since small differences in parameters are easily detected.

2 4132 4.2 Comparison of handwritten signatures

For the second application, we considered handwritten
signatures from the same person and we compared the first
8 213 4 one with the other ones. Using a level®%, only the last

one was rejected, having a vallte= 17.92. The associated
p-value is0.0031. One can see that the image is somewhat
Figure 1: Neighbors of pixel at si& (left), pairs of neigh- different from the other ones so it is not surprising to reject
bors (right). the null hypothesis in that case.
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6 Appendix

&Q.OJ\N- C\“ B&-“ &QW( In this appendix, we first prove that the limiting distribution

of the test statistic is chi-square and then we state some effi-

' : cient ways of generating Gibbs random fields.
6&,0»& C\\ \N &M’

. ' & g 6.1 Asymptotic behavior of the test statistic
&&M el Letd = (a, 3) be fixed and lel. be an ergodic stationary
Gibbs probability measure with local specifications given by
QQ- ' O‘\QQL (21) Setgo’,m,e = Co’,a,x - Eo’,a,,@,m(gw,a,z)n x € A.
Qo uf Since we used the maximum pseudo-likelihood method

for estimating parameters, itis tempting to use the difference
of the log-pseudo-likelihoods as a test statistic as itis donein
[6, Theorem, p. 158] for the maximum likelihood method.
However, because of the dependence in the models, it does
not work. Instead we can use a quadratic form based on the
4.3 Pattern recognition differences of parameters in the two groups.

To make it clear, set

To illustrate again the method, let us compare each of the

k
last three letters in Figure 3 with the first one. P — L . gqT
g 1= k|A| Z Z Sffiywﬁ Soi,ac,é’

Figure 2: Four handwritten signatures of Alain Chalifour.

i=1xzeA

and

k
A 1
A Ji = k|A| Z Z Sowcﬁ S;,x+el,é’
i=1 xz€A

1<1<m.FurtherseV =1+2> J.
=1

A
A

f[=E (sw,aSIx,e) and
_ E ;. -
Figure 3: Four different fonts for letter A. V=I+) FE (Sg,z,GSa,ereu@)jLZ B (Soerei0Szne).
I=1 =

It follows from [5] that [A|'/2 (é - 9) ~
The respective values of the test statistic aré4.46, Ni(0,I'VI~'/k). Let 6* estimated using thg new
102.66, and44.63. Therefore each time the null hypothesis‘mag’esl ThemA|'/2 (60 — 0) ~ N;(0,I-'VI~1/j).

is rejected, using a level af/. Sincel andV converges almost surely tband V' re-

spectively, it follows that

AL 6 onyT 701706 _ o~
%+%(9—9) (V)10 - 6%)

5 Conclusion

We proposed a new statistical method for comparing twoonverges in law to a random variable having chi-square dis-
groups of images. The idea is to model images using paibution withr = g — 1 + m degrees of freedom.
rameterized families of probability distributions and to test

equality of parameters of the respective groups. This meth%d_z Monte-Carlo Markov Chain methods

has the advantage of being easy to implement and also have

a very good discriminating power, as seen by simulationsis sometimes impossibly difficult to generate directly ob-
and comparisons of real binary images. We believe that oservations with a given law. The idea behind Monte-Carlo
method could be very usefull in comparing radar imagelslarkov Chain methods is the following: one generates a
with true images in geomatics, or to find fingerprints thaMarkov chain where the stationary measure is exactly the
match well. desired law. Then one runs the Markov chain for some time
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and one takes the last observation of the Markov chain. A2] Besag, J. (1986). On the statistical analysis of dirty pic-

nice introduction of these methods is [7]; see also [4].

We will now describe the algorithms we used for the gen-

eration of gray levels images.

6.2.1 Metropolis-Hastings algorithm

Letw, = o € Q = {0,1}* be the configuration at time

n. Then the next configuratiow, ; at timen + 1 is
determined in the following way:

e choose a pixel at random inA;

e choosecoloj € {0,1,...
jO - wn(x),
e choose a numbéT in the interval(0, 1);

oif U < eay*ayoJr(j*jo)Z;y;l/3lv(wmﬂﬂ;l)' then

wnt1(z) = 7 and w,y1(y) = wn(y), pour tout
y # xz, wherev(o,z,l) = oz + ¢) + o(x — €));
otherwisew, 11 = wy.

6.2.2 Gibbs sampler algorithm

For this algorithm, one must enumerate the pointdim
as periodic way, that iy, xo, .. ., in such a way that =
{z1,...,2p} and x4, = z,, wherep = |A|. The new
configurationu,, ;1 is determined in the following way:

e choosdJ at random in the intervdD, 1);

o if Poape,a{lwn) < j -1 < U <
Pw7L7ay/8;w7L+1{(w(xn+1) < ]}! for somed <j<g-1,
setwnt1(Tnt1) = j andwp41(y) = wn(y) for all

y € A\ A{xpi1}. HerePy, o.8,2,{(W(@ny1) = j}
is given by formula (2.1).

REMARK. Note that the initial configuration in not impor-

tant. However there are two interesting choiceg:= 0, or

the color of each pixel ofy is determined independently

with P(wo(z) = ) = e / S0 L e,

In the cases = 0, the Gibbs sampler algorithm is su-
perior to the Metropolis-Hastings algorithm since the image

,9—1}\jo atrandom, where

(3]

(4]

tures (with discussion)]. Roy. Statist. Soc. Ser. 48
259-302.

Geman, D. (1990), Random fields and inverse prob-
lems in imaging. IrEcole dét de probabiliés de St-
Flour XVIII, Lect Notes Math1427, pp. 117-193.

Hastings, W.K. (1970), Monte Carlo sampling meth-
ods using Markov Chains and their applications,
Biometrika Vol. 57, pp. 97-109.

[5] Janzura, M. (1997), Asymptotic results in parameter

(6]

[7]

estimation for Gibbs random fieldKybernetika Vol.
33, pp. 133-159.

Serfling, R.J. (1980). Approximation theorems of
mathematical statistic¥iley series in probability and
mathematical statisticdohn Wiley and Sons

Siddhartha, G., and Greenberg, E. (1995), Understand-
ing the Metropolis-Hastings algorithriithe American
Statistician Vol. 49, pp. 327-335.

[8] Younes, L. (1991), Maximum likelihood estimation

wy has the right law, which is not necessarily the case for
the Metropolis-Hastings algorithm because of the sampling

with replacement of the pixels in the latter case.
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