
Abstract

A new part segmentation approach is presented which
works on real 2D images. These images may contain a
complex foreground 3D object with textures and shadows
on a cluttered background. The proposed approach relies on
the outline of the object to guide the grouping of lines using
symmetry and colinearity principles. This grouping of lines
leads to simple shapes which could be modeled by 3D
primitives such as geons or general cylinders. An algorithm
implemented on the basis of this approach appears robust to
noise and generic conditions. Besides, intermediate-level
symmetries employed by the algorithm ensure a good
robustness to internal textures and markings. The results
obtained demonstrate the validity of the approach as a mean
towards 3D generic object recognition from real 2D
images.

1 Introduction

Despite many years of research, a great number of
problems in computer vision still have no complete
solutions. This is the case of generic object recognition.
Indeed, many approaches have been proposed for
recognition of specific objects in specific conditions, but no
system has yet been able to successfully recognize objects
in generic conditions. What is meant by generic conditions,
is a recognition in an environment with variable lighting
conditions, variable and complex backgrounds, variable
visibility, a great number of different objects and
variabilities in the object itself. In the context of this paper,
an object is defined as a complex composition of simple
volumetric parts. Variabilities of the object are for instance
textures and differences in shape which do not prevent
humans to recognize an object as being part of a class of
objects. The concept of class of objects was introduced in
computer vision to mimic the human ability to label several
different objects by the same name because of their
common functions or their structural similarities.

A system capable of working in generic conditions is
said to be a generic object recognition system. Object
recognition systems from single 2D images are usually
composed of three main steps. The first step is the
extraction of low-level primitives (arcs, segments, junctions
and corners) in an image. Then, the second step groups
these primitives into parts (the outline of the simple
volumes that compose an object in 2D or the simple
volumes themselves in 3D) and computes the relationships
between the parts. Finally at the last step, the extracted
parts and their relationships are compared with a database
to identify the object.

To this day, the majority of works on 3D object
recognition from single 2D images attempt to recognize
objects of specific shape without textures with a single
color on a uniform background. The lighting conditions are
also controlled and the objects are often very simple or
synthetic. Despite the contributions of these works, it
remains evident that more general methods are required to
install an object recognition system on, say, a robot or on a
computer controlled unit. This work addresses a new
approach to the part segmentation step of an object
recognition system. It is based on the outline and its
symmetries and it works on a generalization of the usually
processed objects. The implemented part segmentation
system deals with textured objects, on nonuniform
backgrounds with no need of a high contrast between
background and object. The paper has the following
structure. In Section 2, the recent works on 3D object part
segmentation from 2D images are reviewed. Then, in
Section 3, the proposed method is explained and in Section
4 some results obtained by this method are shown.

2 Past works on part segmentation

Let us look at why part segmentation is needed in
generic object recognition. There exists two main
approaches to object recognition, that is i) top-down
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recognition and ii) bottom-up recognition. The next two
subsections will survey these two approaches.

2.1 Top-down recognition

Top-down recognition covers all the object recognition
methods which are looking for or expecting something to
be in the input image. These methods are used in specific
applications where the goal is to find a particular object in
an image. Different things can be searched for in the image
by these methods depending on the target application.
Some are feature-driven and others are part-driven. The
former recognition scheme is based on a search for specific
features to identify an object in an image. The models
database is composed of a set of primitives or features
(corners, junctions, the length of a line, etc.) and their
relative positions, if necessary, for each object to be
recognized. The object recognition system then searches in
the image for features of the expected object. The part-
driven methods work in the same way except that higher-
level structures (set of primitives grouped to form parts) are
searched for instead of independent low-level features. Top-
down recognition is very useful in applications that are not
intended to work in generic conditions. However, this
approach cannot be use for this work.

2.2 Bottom-up recognition

In the case of bottom-up or data-driven recognition,
each input image is processed as if its contents were
initially unknown to the system. A match is searched for in
the models database only after a high-end modeling is
obtained. This approach has the advantage to be able to
learn a model and then recognize new objects. Also, since
nothing specific is searched for in the images, the approach
is more general and applicable than the previous one. As in
top-down methods, the object models can be described
either by features or by parts. Parts describe objects with
less ambiguity than low-level features since they group a
number of low-level features into a higher-level structure.
Part-based recognition is more generic and it offers better
possibilities than low-level features [1]. This is why most
recent generic object description and recognition
approaches are data-driven and part-based [2].

2.3 Part segmentation methods

Many previous methods were reviewed to see if they
could be used or modified to process the type of images
used in this work. This review has shown that there are five
principal types of methods. The first one is the symmetry
axis based methods. A number of methods [3]-[7] rely
almost uniquely on symmetry axes to extract parts. These

methods compute the symmetry axes of the outline of the
object, and the intersections of these axes give the clues
necessary to extract the parts. In these works, the symmetry
axes are found in many different ways. Some use the
standard skeleton [3], while others use more sophisticated
methods, like annular operators [7]. Although these
methods work fine on images without textures, their use on
textured objects would give a large number of axes (most of
them irrelevant), and it might be quite difficult to interpret
the resulting data as parts. In another method [4][5], parts
are found by computing distances and curvatures on the
boundaries and shocks on the symmetry axes of the object
to obtain neck-based and limb-based parts. This method is
capable of dealing very well with occlusions. The parts
obtained appear quite similar to what a human would find.
Since this method also relies on symmetry axes, textures
and noise may not permit an adequate extraction of parts.
The calculations on boundaries would also be difficult
because of the great possibility of incomplete or noisy
outline. This first type of methods is thus not suited for the
images intended to be processed in this work.

The second type of methods [8]-[10] is based on the
minimum description length (MDL) criterion. Their goal is
to group lines or pixels together if and only if they respect a
MDL criterion. Again, with uniformly painted objects and
not much noise, these methods offer a good alternative.
However, with textured objects, shadows and noisy data,
irrelevant parts are likely to be found since good lines and
noisy lines could easily be grouped. Then, it would be
difficult to separate the good parts from the irrelevant ones.
Again, this method does not apply very well to real
complex images.

The third type of part segmentation methods is
exemplified by Bennamoun [11]. It finds parts by dividing
the outline of an object into convex parts with the help of
convex dominant points. This method has the disadvantage
of not being independent of the viewpoint. The convex
dominant points are likely to change with the viewpoint,
which makes it difficult to have a consistent representation
of a given object. Also, with noisy objects and textures, it is
not clear whether the correct outline can always be found
without mistakes. This type of method has been ruled out in
this work.

The fourth type of methods, like the ones proposed by
Jacobs [12] and Jacot-Descombes et all [13], consists of
making closed cycles with lines. In the case of Jacot-
Descombes, all possible cycles with the lines of the object
are found and the pertinent ones (the ones that do not
contain sub-cycles) are then labeled as parts. This approach
is of great interest for the case where the gaps in and
between the lines are short. Since, this cannot be



guaranteed with real images, a number of parts would not
be found. Indeed, in this method not all available structural
informations, like the configuration of the lines, is used.
The approach of Jacobs differs by the use of a proximity
and a convexity criterion. The parts obtained are convex.
They are determined by their saliency which takes into
account gaps in lines. This method attains its goal, but the
convex parts obtained are more and less consistent when
the viewpoint is changed and when lines appear or
disappear because of noise.

Finally, the last type of part segmentation methods
groups lines into parts based on their configurations.
PARVO [14] uses Biederman theory [15] to extract object
parts. This system relies on symmetry, colinearity, corners
and junctions to extract viewpoint invariant parts. It gives
good performance on line drawings, but it has not been
designed to deal directly with real images. Indeed,
junctions and corners are not always easily interpretable on
real objects, because of textures and noise. Further in the
past, Brooks [16] proposed an object recognition system
called ACRONYM in which the part segmentation step
consisted of finding ribbons in the extracted edges. This
idea of extracting ribbons is valuable, but Brooks’s method
was not robust enough to deal with generic conditions. As a
result, parts were missing in the output structure. Also,
because this method did not use local features (like corners
and junctions) or the outline to guide the identification of
ribbons, textures would generate noisy ribbons which,
combined together, could lead to erroneous identifications
of objects.

In the existing methods, none has quite the strength we
are looking for to handle textured 3D objects in real 2D
images with a background which is not necessarily
uniform. In fact, in our literature review, we have not found
any similar works based on the generic conditions that this
paper addresses. However, a combination of the different
approaches may help produce a system capable of attaining
our goal. For instance, a method grouping arcs and
segments by symmetries could be well suited to handle 3D
objects and parts. The next section explains the proposed
approach and its basis.

3 The implemented approach

The implemented approach is based on Lowe’s work
[17] which states that colinearity, proximity and symmetry
are important clues used by humans to identify objects.
Biederman [15] has also shown that humans recognize
objects by their component parts which are defined by the
previously enumerated features. It has been deduced from
these works, that parts can be obtained by looking for
symmetry between lines, as in many previous works.

However, with real images, symmetry must be used at a
higher level as it is done, for instance, in PARVO. It means
that symmetry axes cannot be computed on purely local
basis. Instead, lines must be paired when they are globally
symmetrical. This principle is used in our approach.
Proximity and colinearity are also used to bridge gaps
before pairing the lines in order to obtain the two main
sides of the parts.

The originality of this approach is that the pairing of
symmetrical lines is guided by the outline instead of
junctions or corners. In PARVO, the lines are paired
together if they can be interpreted as belonging to a single
part at a high-level junction. In contrast, our approach
combines two lines by checking first that they are both on
the outline and may give rise to a part structure. It has been
shown in many previous works that the outline conveys a
lot of informations about the structure of an object, even a
complex one. By guiding the pairing of part sides using the
outline, less mistakes are likely to be made in noisy images.
Besides, this approach does not require the outline to be
perfect since it is only used to guide the line grouping
process.

The following sections present the general ideas behind
the approach. A more detailed description of the
implemented algorithms is available in [18].

3.1 Outline extraction

In this work, low-level primitives are assumed to be
provided. These required primitives are arcs and segments
approximating contours. They are obtained using the SE2D
system [19]. Starting with these primitives, the outline is
extracted. This may be done in many ways. We have
decided to develop an algorithm based on the following
simple observation (Figure 1): when a contour line is found,
it is possible to track the contour from it by making a
clockwise cycle. A simple condition is imposed; that is, to
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Figure 1:  Tracking the outline of an object.

Clockwise
tracking



go from a given line to the next at a multi-possibilities point
(MPP, see Figure 1), one selects the line that makes the
largest relative counterclockwise angle. The lines
considered for possible continuation are those that are in a
circular area centered on the endpoint of the current line.
The pertinent endpoint is chosen such that the cycle is made
clockwise. With this largest angle criterion, the algorithm is
robust to distraction caused by internal texture lines.

At each MPP, the lines are recorded in a stack. If at a
given point, a continuation line cannot be found, the
algorithm returns to the previous MPP and retries using the
second largest angle line. This continues until either a
closed cycle is obtained or all the lines of the MPPs have
been tried. Only in the latter case would the algorithm fails
to recover a closed outline.

In order to increase the algorithm performance, the lines
added to the cycle are monitored. If a series of consecutive
erratically oriented short lines is added, they are erased and
the algorithm returns to the last MPP. This way, the
algorithm avoids building cycles with a large number of
irrelevant random background textures. The performance of
the algorithm is adjusted with parameters that control the
extent of the circular area. One for the lower bound (which
is function of the position errors of the detected lines) and
one for the higher bound (which is function of the line
density in the image). These bounds permit to increase the
circular area and recover from a failure of the algorithm
when it is unable to make up a closed cycle. In the present
implementation, the lower and the upper bound are set
manually. Figure 2 shows the outline found for a synthetic
ladder object.

3.2 Part segmentation

To avoid making early decisions that could lead to
mistakes, the algorithm is divided in two steps. The first
step makes sure that only the most obvious parts are
extracted. Then at step 2, all the remaining possible parts
are extracted and then interpreted. Previously to these two

Figure 2:  The outline of a ladder.

steps, the lines (arcs and segments) positioned outside of
the closed outline are removed. The remaining lines are
assumed to be on the object. Also, before the execution of
these two steps, lines are grouped by a cocurvilinearity
criterion, whenever possible, in order to bridge noise gaps
in lines.

3.2.1 Parts extracted at step one

Beginning with the longest outline line (arc or
segment), the lines which make a symmetrical or parallel
pair [20] with it are searched for (Figure 3). Using a quality
factor based on the overlap, the separation, and the length
of the lines, the best match is determined. This match must
involve another line which is completely or partially on the
outline. To validate this match, the best possible
symmetrical or parallel pair (including both outline and
interior lines) made with each of the two previously
matched lines is found (Figure 4). If the two previously
matched lines are matched with each other again or with the
same line, the match is validated and the pair is accepted as
the basis of a part to be later completed (See Section 3.2.3).
If not, the match is discarded and other lines are tried to
avoid any risk of ambiguity. This process is run until no
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Figure 3: The extraction of part sides by pairing
symmetrical or parallel lines. Line 1 is the best match
because of proximity. It will form the basis of a part
with the longest outline line.

Figure 4: The validation of a match. Match #1 is
validated because the two matched lines are parallel
with the one in the middle. Match #2 is not validated,
because both lines form better parallel pairs with the
other lines between. Match #3 is validated since the two
lines are again grouped together.
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part can be extracted without ambiguities. Figure 6a) shows
the step one parts obtained for the ladder. An analysis of the
effect of some parameters used at this step is available in
[18].

3.2.2 Parts extracted at step two

At this point, the step one parts have been extracted and
their lines removed from the data to speedup the
processing. For each remaining line, the best matching line
is found and the pair is assumed as the basis of a part until
an overlapping analysis is performed. At this step the
matched lines does not have to be on the outline. Parts
found at this stage are usually internal parts that are not in
contact with the outline of the object (Figure 5). The best
step 2 parts kept after analysis are usually actual parts of the
object because of its inherent structure and the previous
removal of step one parts. Figure 6b) shows the step two
parts obtained for the ladder.

3.2.3 Parts completion

Parts are completed by making closed paths from
matched lines. Two paths are formed to connect the

Internal part

Figure 5:  Example of an internal part.

Figure 6: The completed parts extracted from a
synthetic ladder. a) Step one parts. b) Step two parts.
Left extremities of the rungs are enclosed in step one
parts because lines are split at junction points in pre-
processing.

a) b)

matched lines endpoints. These paths are formed in a way
similar to the outline extraction and, as such, they must
respect a number of criteria. First, the paths must not
intersect themselves. Also, the lines making up the paths
must remain in the area enclosed by the two matched lines
(sides) to ensure that the shape of the extracted part is
mainly determined by its two sides. If paths cannot be
completed, straight lines complete the parts by joining the
endpoints. The part description is then stored, including its
internal lines which are in the area enclosed by the
extracted boundaries.

4 Experimental Results

In this section, the results of processing two real images
are presented and commented. The goal is to show the
capabilities of the implemented algorithm and its
limitations. Figure 7 presents the results obtained on a real
image of an airplane on a nonuniform background. It can be
seen on Figure 7b) that the outline obtained captures well
the shape of the airplane. However, it also follows a section
of the background road. This is not surprising, as our
algorithm is designed to be very robust to internal object
textures, but not as much for background textures.
Nevertheless, the monitoring of small random lines permits
us to not continuously follow the background textures
while constructing the outline. Since a section of the road is
retained, it can be expected that some spurious parts are to
be found. In all experiments, the first outline lines used for
tracking are chosen among the image lines that are first
encountered by rays issued from eight uniformly
distributed locations on the image border. Eight possible
cycles (one for each rays) are then constructed and the best
closed contour is chosen by considering the aspect ratio
computed from the perimeter and the area enclosed by the
cycle.

Figure 7 c)- m) show the parts obtained. It can be seen
that only two parts are irrelevant (j and m). One is caused
by the road section included in the outline. The other is also
caused by a pattern in the background. All the other parts
correspond to sub-structures of an airplane. The part in
Figure 7c) appears not to be closed, but in fact the two sides
are joined at each extremity by closed cycles. When making
cycles, gaps are permitted in order to be robust to noisy
images.

Figure 8 shows the results obtained on a stool image. It
can be seen from Figure 8b) that the outline is obtained
without any major mistake. The cycle did not follow the
shadow region between the two front legs. Following the
shadow would have possibly caused errors in the extracted
parts. Figure 8c) shows that the top part and the legs of the
stool have been found successfully. It can also be seen that
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Figure 7: Results on an airplane image. a) The original image. b) The outline obtained from our algorithm. The
sequence of images from c)-k) are step one parts, and images l) and m) are step two parts.

e)

Figure 8: Results on an object with self-occlusion. a) The original image. b) The extracted outline. c) The parts
obtained and their links.

a) b) c)



the back rung, which is occluded, has been found. However,
this figure also shows that highly textured objects may
cause over-segmentation. For example, the front rung of the
stool is decomposed into three parts. A spurious part has
been found which corresponds to an internal hole in the
object. This is due to the fact that the rungs are found as
step two parts and the outline information is not used at this
step. Merging of oversegmented parts is to be considered in
future works.

5 Conclusion

In this paper, an original approach to 3D part
segmentation has been presented. It has been implemented
and tested on 2D images obtained in generic conditions.
The main difference with the majority of existing systems
is that our method relies mainly on the outline of the object
to guide the high-level line grouping process. Informations
contained in the outline give important structural clues on
the object. It is thus possible, using this simple knowledge
and a global symmetry principle, to decompose the object
into its component parts. This approach allows one to
segment into parts 3D objects of a complexity greater than
many existing systems. It produce good results for 2D
images with shadows, textures, a moderately complex
background, and object self-occlusions.

The outlines obtained with the contour extraction
algorithm have shown the ability of the algorithm to not be
distracted by internal object textures and shadows. The part
segmentation algorithm in itself gives results that, even
though hard to precisely quantify at this stage, appear
consistent with the high-level object structure. If one
consider parts visible from a particular viewpoint, it is not
necessarily the exact shape of the parts found that is the
most important. Indeed, the ability of a part segmentation
algorithm to give a unique and consistent description of an
object in each viewpoint, might be sufficient to realize a
good match with a generic model in a database. Other
results indicate that such a unique and consistent
description is attainable using our algorithm (see [18]).

The results obtained confirm the potential of the
approach. Many future works can be envisaged. For
instance, the results obtained could be evaluated in generic
object recognition tasks. Also, the performance of the part
segmentation algorithm could be improved by the
knowledge of internal contours. These could be obtained by
3D data or, to stay in the 2D domain, by using the changes
in the structural informations caused by the extraction of
parts. Indeed, when a part is found, its outline lines can be
removed. This removal causes the outline to become
incomplete. Reconstructing the outline would give new
outline lines that are internal to the object. Also, to obtain a

complete object recognition system, the parts extracted
could be modeled as 3D volumetric primitives. In fact, the
part segmentation algorithm has been designed with that
goal in mind. Most parts obtained could easily be modeled
by generalized cylinders or geons.
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