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Abstract

This paper presents two new evaluation methods on
edge detectors. The �rst is non-contextual and it con-
cerns the evaluation of performance of edge detectors
in terms of detection errors. The second method is con-
textual and it concerns the evaluation of performance
of edge detectors used in image compression. In both
methods, we studied the inuence of the image char-
acteristics and edge detector properties on its perfor-
mance. Seven detectors have been evaluated and their
performance compared.

1 Introduction

Several edge detectors have been proposed, often dif-
ferent by their goals and their mathematical and algo-
rithmic properties [19]. Consequently, a problem en-
countered by vision systems developers is the selec-
tion of an edge detector to be used in the considered
application. This selection is primarily based on the
de�nition of the inuence of image characteristics and
properties of detectors on their performance, which we
call the performance evaluation of edge detectors [18].
Consequently, several performance evaluation methods
have already been proposed. These methods can be re-
grouped in three classes. The �rst regroups subjective
methods [11, 6], borrowed from the �eld of psychol-
ogy, which use human judgment to evaluate the per-
formance of edge detectors. More precisely, it consists
of presenting a series of edge images to several indi-
viduals and asking them to give a score according to
a given scale [11]. Even if these methods seem easy
to put in practice, they have some inconvenience. The
number of characteristics a human eye can distinguish
is limited. For example, the eye cannot di�erentiate
between two gray levels that are slightly di�erent. Also
the judgment depends on the individual's experience,
his attachment to the method, and on the image type
(e.g., multi-spectral, x-rays). The second class regroups
objective methods [1, 8, 9, 13] that uses synthetic im-
ages to evaluate the performance of edge detectors by

measuring di�erent types of detection errors. This can
be completed by experimentation or by using mathe-
matical developments. The third method is hybrid. It
combines a subjective method and an objective one [7].
These three evaluation methods can be completed tak-
ing the further use of edges into account [17, 15].

This paper presents two new performance evalua-
tion methods on edge detectors: contextual and non-
contextual. The non-contextual method concerns the
evaluation of the performance of edge detectors in terms
of detection errors. The detection errors include clas-
sical errors (omission, localization, multiple responses
and sensitivity) and two new errors related to false edge
suppression and orientation of the edges. The basic idea
behind this method consists of running a given detector
several times on an image with a known structure by
varying the parameters of the detector and the image,
and then to measure its performance. The back draw
of this approach is that it does not completely charac-
terize the performance of edge detectors, and it seems
important to take into account their further use, that is
to know if they satisfy the requirements of a particular
application. For this reason we proposed a contextual
performance evaluation method. This method concerns
the evaluation of the performance of edge detectors in
the context of image compression. It consists of mea-
suring the performance of an edge detector according to
the mean square di�erence between the reconstructed
image from edges and the original one. In both meth-
ods, we studied the inuence of the image character-
istics and the detector properties on the performance
of this latter. This paper is divided in six sections.
The next describes the non-contextual method of per-
formance evaluation. Section 3 describes the experi-
mental results du to this evaluation method. Sections
4 and 5 are devoted to the contextual performance eval-
uation method and the experimental results obtained.
Lastly, section 6 summarizes the main results.



2 Non-Contextual Performance Evalu-

ation Method
The non-contextual method consists of running several
times an edge detector on a image of known structure
(e.g., synthetic image) by varying the image charac-
teristics and the detector properties. We then deter-
mine the inuence of these parameters on the perfor-
mance of edge detectors. The detector performance is
determined by comparing the obtained edges with the
ideal edges, which are assumed to be known. For this
purpose, a given edge pixel is classi�ed in one of the
following four classes: ideal, delocalized, multiple, or
false. False edges do not belong to the support region
of ideal edges (i.e., pixels in the vicinity of ideal edges).
The width of the support region of the edge inuences
the performance. Figure 1.a presents an example of
the ideal edges, identi�ed in black. The pixels iden-
ti�ed in gray belong to support region of ideal edges.
Among edges detected within the support region, there
are ambiguous edges corresponding to the multiple re-
sponses. All edges detected within the support region
and which are not ambiguous are called unambiguous
edges. Among the multiple responses of a detector to
an ideal edge, the closest detected edge to ideal edge be-
longs to the unambiguous edges. The performance of
an edge detector are de�ned by six errors that are the
omission, localization, multiples responses, sensitivity,
false edge suppression, and edge orientation. False sup-
pression and orientation errors concern only the gradi-
ent detectors. A good detector must minimize all theses
errors. De�nitions of these performance measures are
provided as follow:

a. b. c.
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Figure 1: Detection errors. (a) Ideal edges, black pixels
are ideal edges and grey pixels belong to the support
region of ideal edges. (b) Omission error. (c) Localiza-
tion error. (d) Multiples responses error. (e) Sensitivity
error. False suppression and orientation errors are not
easy to represent
� Omission error. It occurs when the detector omits
to �nd ideal edge (Figure 1.b). The error is mea-

sured by the total number of omitted pixels on the
total number of ideal edges.

� Multiple responses error. It occurs when multiple
edges are detected in the vicinity of ideal edge (Fig-
ure 1.d). The error is de�ned by the total number
of ambiguous pixels on the total number of unam-
biguous edges.

� Localization error. It occurs when the location of
unambiguous edges is di�erent from the location of
ideal edges (Figure 1.c). The error is measured by
the total distance between unambiguous edges and
ideal edges on the total number of unambiguous
edges.

� Sensitivity error. This error occurs when the de-
tector localizes edges which do not belong to the
support region of ideal edges (Figure 1.e). The er-
ror is de�ned by the total number of false edges on
the total number of edges detected.

� False suppression error. Usually false edges sup-
pression is done by a thresholding operation. The
edges that have a gradient modulus below a given
threshold are then suppressed. However, the gra-
dient modulus of an unambiguous edge may be
lower than the gradient modulus of a false edge.
The false suppression error occurs when there is a
suppression of unambiguous edges while false edges
persist. Let us consider the distribution of the gra-
dient modulus of false edges and the distribution
of the gradient modulus of unambiguous edges, the
false suppression error is measured by the overlap-
ping between these distributions.

� Orientation error. It occurs when the estimated
orientation of the detected edge is not equal to the
given orientation. The error is de�ned by the sum
of the absolute value of the di�erence between the
estimated and the given orientations of unambigu-
ous edges on the total number of unambiguous de-
tected edges.

The considered parameters that inuence the detec-
tor performance concerns the detector properties, the
image characteristics, and the performance evaluation
method. The parameters of the detector are scale, order
of the di�erentiation operator and �lter. The parame-
ters of the image concerns the edges such as type, sharp-
ness, signal-to-noise ratio and subpixel. The edge type
we considered are the step, staircase and pulse (Fig-
ure 2). Another parameter related to the performance
evaluation method, the size of the support region of
ideal edges. The parameters that take their values in
continuous intervals are sampled. We have considered
large intervals for the parameters and a small step for
the sampling, i.e, subpixel 2 [0.0, 0.5], sharpness 2 [1,
10], signal-to-noise ratio 2 [2, 5], scale 2 [0.95, 5.0], and



support region size 2 [3, 11]. This allows us to have a
better idea on the detector performance.
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Figure 2: Pro�les of (a) step, (b) staircase and (c) pulse.

Figure 3 presents an example of a synthetic image of
256x256 pixels and 256 gray level used in the evaluation.
The image contains �ve edges where the type of each
one are, from left to right, step, ascending staircase, de-
scending staircase, pulse and inverted pulse. The verti-
cal step edge is determined by the following equation:            

Figure 3: Synthetic image

I(x; y) =

8<
:

c � (1� 1
2e
��(x�Locedge)) if x � Locedge

c
2 � e

�(x�Locedge) if x > Locedge

where c is the contrast, � the sharpness and Locedge
the location of the edge. This location can be real (sub-
pixel). The staircase and pulse edges are formed by the
combination of two steps ; I(x; y) + aI(x��; y) where
a < 0 is a pulse and a > 0 is a staircase. To this image,
we added white noise of a given standard deviation.

The edge detectors used are the gradient of Gaus-
sian (DGG) [2], gradient of Deriche (DGD) [5], gradient
of Shen (DGS) [16], Laplacian of Gaussian (DLG) [10],
Laplacian of Deriche (DLD), Prewitt (PWT) and So-
bel (SBL) [14]. There are several ways to implement
the edge detector algorithms. To reduce the e�ect of
the implementation method, all algorithms have been
implemented by convolution masks. It is then possible
to determine the inuences of di�erentiation operators
and �lters on the obtained performance measures. For
example, the di�erence in performance of Laplacian of
Gaussian and gradient of Gaussian is due to the dif-
ferentiation operator. Similarly, the di�erence in the
performance of the gradient of Deriche and the gradi-
ent of Shen is due to the �lter.

It should be recalled that to obtain the performance
measures of the edge detectors, we ran them by varying
the detection parameters mentioned above. Each error
is a function of eight variables: di�erentiation operator,
�lter, scale, edge type, sharpness, signal-to-noise ratio,
subpixel, size of support region. These functions are
discrete and there are no e�cient way to analyze them.
To carry out the performance analysis, we chose to re-
duce the number of variables to �ve (i.e., edge type,
�lter, scale, di�erentiation operator, one of the image
characteristics) by using a projection operation.

3 Experimental Results
In this section, we present the general observations de-
rived from the results for the non-contextual method.
Tables 1 and 2 present experimental results obtained
in the case of a step edge. The �rst number indicates
the mean error. In order to make easy the comparison
of detectors, we normalized the errors by dividing each
one by the highest one. In tables 1 and 2, the normal-
ized errors are within brackets. For example, for DGS
the omission error is 0.05, normalized omission error
0.56, false separation error 0.26, and normalized false
separation error 0.93. The performance in the case of
staircase and pulse are in Tables 3, 4, 5, 6.

False suppression Orientation

DGG 0.18 (0.64) DGG 31.22 (0.86)
DGD 0.21 (0.75) DGD 33.42 (0.92)
DGS 0.26 (0.93) DGS 35.12 (0.97)
PWT 0.27 (0.96) PWT 35.79 (0.99)
SBL 0.28 (1.00) SBL 36.13 (1.00)

Table 2: False separation and orientation errors of gra-
dient detectors in the case of step edges. We used the
same scale for the all detectors.

False suppression Orientation

DGG 0.16 (0.57) DGG 24.27 (0.77)
DGD 0.19 (0.68) DGD 26.85 (0.85)
DGS 0.26 (0.93) DGS 30.37 (0.96)
PWT 0.27 (0.96) PWT 31.29 (0.99)
SBL 0.28 (1.00) SBL 31.60 (1.00)

Table 4: False separation and orientation errors of gra-
dient detectors in the case of staircase. We used the
same scale for the all detectors.

By analyzing the obtained results, we conclude that:

� The ranking of detectors is the same in the case
of multiple responses, sensitivity, separation and
orientation errors. The sensitivity error of all de-
tectors is comparable. The DGG has the lowest
errors for multiple responses and sensitivity while



Omission Localization Multiple responses Sensitivity

DLD 0.02 (0.22) DGS 0.70 (0.87) DGG 1.21 (0.52) DGG 0.93 (0.97)
DLG 0.04 (0.44) DGD 0.73 (0.92) DGD 1.58 (0.68) DGD 0.94 (0.98)
DGS 0.05 (0.56) DGG 0.77 (0.97) DGS 1.65 (0.71) DGS 0.94 (0.98)
DGD 0.06 (0.67) DLG 0.78 (0.99) DLG 1.75 (0.76) DLG 0.95 (0.99)
DGG 0.09 (1.00) DLD 0.79 (1.00) DLD 2.31 (1.00) DLD 0.96 (1.00)

Table 1: Mean performance in the case of a step. The scale is between 1.0 and 2.5 for DGG and DLG, and
between 0.82 and 1.82 for DGD, DGS et DLD.

Omission Localization Multiple responses Sensitivity

DLD 0.02 (0.18) DLD 0.25 (0.36) DGG 0.74 (0.43) DGG 0.86 (0.96)
DLG 0.06 (0.55) DLG 0.49 (0.70) DGD 0.97 (0.57) DGD 0.88 (0.98)
DGS 0.07 (0.64) DGS 0.67 (0.96) DGS 1.08 (0.63) DGS 0.88 (0.98)
DGD 0.08 (0.73) DGG 0.69 (0.99) DLG 1.38 (0.81) DLG 0.89 (0.99)
DGG 0.11 (1.00) DGD 0.70 (1.00) DLD 1.71 (1.00) DLD 0.90 (1.00)

Table 3: Mean performance in the case of a staircase. The scale is between 1.0 and 2.5 for DGG and DLG, and
between 0.82 and 1.82 for DGD, DGS et DLD.

False suppression Orientation

DGG 0.16 (0.57) DGG 24.41 (0.77)
DGD 0.20 (0.71) DGD 27.17 (0.86)
DGS 0.26 (0.93) DGS 30.43 (0.96)
PWT 0.27 (0.96) PWT 31.18 (0.97)
SBL 0.28 (1.00) SBL 31.62 (1.00)

Table 6: False separation and orientation errors of gra-
dient detectors in the case of a pulse. We used the same
scale for the all detectors.

the DLD has the highest. At a comparable scale,
PWT has the highest error of omission. A detector
with low multiple responses and sensitivity errors
has a high omission error and vice-versa.

� The performance are inuenced by the di�eren-
tiation operator. Laplacian detectors have lower
omission error than their respective gradient de-
tectors. However, these latter have lower multi-
ple responses and sensitivity errors than their re-
spective Laplacian detectors. This explain why the
Laplacian detectors are not suitable for noisy and
textured images. A Laplacian detector is more
suitable for the localization of staircase and pulse
edges. However, a gradient detector is more suit-
able to the localization of step edges.

� The performance are inuenced by a �lter. In the
case of Gauss, Deriche, and Shen detectors, the �l-
ter that has lower separation and orientation errors
has a higher omission error and lower multiple re-
sponses and sensitivity errors. The �lter of Shen
has the lowest omission error for all the edges. It is
followed by the �lters of Deriche and Gauss. The

ranking is inverted for multiple responses and sen-
sitivity errors. For the localization error, the rank-
ing varies according to the scale and the types of
edges. For a step edge, the ranking is DGS, DGD
and DGG. For a staircase, the ranking is DGS,
DGG and DGD, but we noticed that the di�erence
between the DGG and DGD is small.

� The performance measures of detectors have also
been compared by computing the correlation be-
tween them. All the results presented previously
have been con�rmed.

We will now deal with the inuence of the consid-
ered parameters on the performance of a detector. As
we mentioned before, the quantity of data generated by
the non-contextual method is overwhelming (see [12]).
In order to analyze the variations of performance, we
proposed to de�ne a "language" to describe the behav-
ior of the detectors. Figure 4 de�nes the increasing
curves (see [12] for the decreasing curves). Figures 4.a
to 4.d present curves that increase linearly. Figure 4.e
presents a curve that increases exponentially and �gure
4.f presents a curve that increases logarithmically. The
borders 1 and 2 are the interval of variation of the error.

To complete our "language", we needed to add three
curves. The �rst represents quasi-linear measures (Fig-
ure 5.a). The second characteristic represents oscillat-
ing measures (Figure 5.b). Finally, it is possible that
the measures oscillate between the two borders, that is
they are not increasing nor decreasing (Figure 5.c).

Figure 6 presents an example of the performance of
detectors as function of the signal-to-noise ratio in the
case of a step. The observations below concerns all the
type of edges, since the variation of the performance



Omission Localization Multiple responses Sensitivity

DLD 0.02 (0.18) DLD 0.28 (0.41) DGG 0.74 (0.47) DGG 0.86 (0.95)
DLG 0.03 (0.27) DLG 0.50 (0.72) DGD 0.98 (0.62) DGD 0.88 (0.97)
DGS 0.07 (0.64) DGS 0.67 (0.97) DGS 1.08 (0.68) DGS 0.88 (0.97)
DGD 0.08 (0.73) DGG 0.68 (0.99) DLG 1.17 (0.74) DLG 0.89 (0.98)
DGG 0.11 (1.00) DGD 0.69 (1.00) DLD 1.59 (1.00) DLD 0.91 (1.00)

Table 5: Mean performance in the case of a pulse. The scale is between 1.0 and 2.5 for DGG and DLG, and
between 0.82 and 1.82 for DGD, DGS et DLD.
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measures as a function of the image characteristics is
the same for the step, stair and pulse edges.
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Figure 6: Performance of detectors as a function of the
signal-to-noise ratio in the case of a step. Results ob-
tained are rounded to two decimals; this explains why
some borders are equal (e.g., column SE).

� When the subpixel increases, the omission error
oscillates for gradient detectors and it increases
linearly with oscillations for Laplacian detectors.
The localization error increases linearly with oscil-

lations for all detectors. The multiple responses er-
ror oscillates for gradient detectors and it decreases
linearly for Laplacian detectors. The sensitivity er-
ror oscillates for all detectors. The separation and
orientation errors oscillate for all gradient detec-
tors.

� When the sharpness increases, the omission error
decreases exponentially for all detectors. The lo-
calization and multiple responses errors decrease
exponentially for gradient detectors and they de-
crease linearly with oscillations for Laplacian de-
tectors. The sensitivity error decreases linearly
with oscillations for all detectors. The separation
and orientation errors decrease exponentially for
all gradient detectors.

� When the signal-to-noise ratio increases, the omis-
sion and multiple responses errors decrease quasi-
linearly for all detectors. The localization error
decreases quasi-linearly for gradient detector and
it decreases linearly with oscillations for Lapla-
cian detectors. The sensitivity error decreases lin-
early with oscillations for all detectors. The sep-
aration error decreases almost linearly for PWT
and SBL and it decreases exponentially for DGG,
DGD and DGS. The orientation error decreases
quasi-linearly for all gradient detectors.

� When the size of the support region increases, the
omission error decreases exponentially, and the lo-
calization error increases logarithmically for all de-
tectors. The multiple responses increase linearly
for PWT, SBL, DLG and DLD, and it increases
quasi-linearly for DGD and DGS, and it increases
exponentially for DGG. The sensitivity error de-
creases linearly for all detectors. The separation er-



ror increases quasi-linearly for all detectors, except
for DGG where it increases exponentially. The ori-
entation error increases logarithmically for all de-
tectors. We conclude that the non-contextual eval-
uation method is sensitive to the the size of the
support region.

� When the scale increases, the omission error in-
creases logarithmically for gradient detectors and
it increases linearly for Laplacian detectors. The
localization error increases exponentially for gra-
dient detectors and it increases logarithmically for
Laplacian detectors. The multiple responses error
decrease linearly for gradient detectors and it de-
creases exponentially for Laplacian detectors. The
sensitivity error decreases linearly for all detectors.
The separation error decreases linearly with oscil-
lations, and the orientation error increases loga-
rithmically for DGG, DGD and DGS.

4 Contextual Performance Evaluation

Method

This method consists of measuring the performance of
the detectors in the context of image compression. The
idea to compress an image from the coded data of the
edge image was proposed by Carlsson [3, 4]. The image
coding algorithm is based on the principle that impor-
tant features like edges should be coded and reproduced
as exactly as possible and no spurious features should
be introduced in the image reconstruction process. The
reconstructed image is smooth and is obtained as the
solution to a heat di�usion equation. The back draw is
that the decompressed image is degraded because there
is a lost of information during the edge detection pro-
cess. As we will show, the reconstructed image is inu-
enced by the detector used and image characteristics.
We are not interested in the image compression pro-
cess; rather, our primary interest lies on the image re-
constructed to characterize the performance of the edge
detector used. The performance evaluation method is
applied in two steps. The �rst consists of obtaining
edges by performing an edge detection with a given
detector. Figure 7 presents eight images used in the
evaluation. These images have a size of 256x256 pixels
and 256 gray levels. We also considered di�erent types
of edges in order to determine the inuence of image
characteristics on the detector performance (Fig., 7.a,
7.b, and 7.c). The second step consists of reconstruct-
ing the original image from the edge image by using the
di�usion process.

The considered edge detectors are DGG, DGD,
DGS, DLG and DLD. The interval used for the scale is
between 0.95 and 5.0. The performance of the detector
is de�ned by the mean square di�erence between the

reconstructed image Irec and the original Iori:

Equadratic =

qP
x

P
y (Irec(x;y) � Iori(x;y))2

n

where n is the image size. When Equadratic equals
0, it means that the reconstructed image is identical to
the original one. The greater the value of Equadratic,
the more degraded the reconstructed image.

5 Experimental Results
This section presents the experimental results for the
contextual method. Figure 8 shows an example of a
reconstructed image. For each image, �gure 9 presents
the mean square di�erence between the reconstructed
image and the original one as a function of the scale.
We conclude that:

a. b.

c.

Figure 8: Image reconstruction: (a) original image, (b)
edge image, and (c) reconstructed image.

� The quadratic error depends on the scale. It in-
creases when the scale increases for all detectors.
In fact, at high scale there are few detected edges.
The di�usion process, which is iterative, has fewer
edges to begin with.

� The performance depends on the edge type. In the
case of a step edge, the ranking for a small scale
2 [1:0; 1:6] is DGG, DGD, DGS, DLG, and DLD
(see �gure 9.a). The ranking for a greater scale
2 [1:6; 5:0] is DGS, DGD, DLD, DGG, DLG. In
the case of staircase and pulse, the ranking for a
small scale 2 [1:0; 1:6] is DGG, DGD, DGS, DLG
and DLD (see �gures 9.b and 9.c). We noticed that
it is similar in ranking with the case of a step edge.
The ranking for a greater scale 2 [1:6; 5:0] is DGS,
DLD, DGD, DLG, DGG. A Laplacian detector has
a lower error than its respective gradient one.
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Figure 7: Synthetics images: (a) step, (b) staircase and, (c) pulse. Real images: (d) nuts, (e) glasses, (f) Lena,
(g) back, and (h) Sherbrooke.

� For �gures 9.d and 9.e, a gradient detector has a
lower error than a Laplacian one. For �gures 9.f
and 9.g, a gradient detector has a lower error than
its respective Laplacian one. For �gure 9.h, a gra-
dient detector has a lower error than its respective
Laplacian one, except for the Gaussian detectors.
We conclude that the performance is inuenced by
the di�erentiation operator.

� The performance is inuenced by a �lter. The �lter
of Shen has the best results. It is followed by the
�lters of Deriche and Gauss.

6 Conclusion
We presented in this paper two performance evaluation
methods to measure the performance of edge detectors.
The �rst one is non-contextual and concerns the evalu-
ation of the performance of edge detectors in terms of
detection errors. The main features of this method are:

� The detection errors include classical errors (omis-
sion, localization, multiple responses and sensitiv-
ity) and two new errors related to the separation
and the orientation of the edges.

� The inuence of the image characteristics and the
properties of detectors on their performance is car-
ried out. The image characterestics are the types
of edges, subpixel, sharpness and signal-to-noise
ratio. The detector parameters are the scale, or-
der of the di�erentiation operator and �lter. A last
parameter, the size of the support region of ideal
edges is used to measure the performance of the
detectors.

The most of quantitative evaluation methods are
non contextual. However, these methods do not com-
pletely characterize the performance of an edge detec-
tor. It is important to take into account the further

use of the detector to know if it satis�es the require-
ments of a particular application. This is why we pro-
posed a second evaluation method of the performance
of edge detectors in the context of image compression.
It consists of measuring the performance of an edge de-
tector according to a mean square di�erence between
the reconstructed image and the original one. In both
methods we studied the inuence of the images charac-
teristics and the detector properties on the performance
of this latter. This study help in the selection of an edge
detector for the considered application. For example,
it is better to use a gradient detector to localize a step
and a Laplacian detector to localize a stair or a pulse.

However, several improvements can be done in order
to make these performance evaluation methods more
complete such as the de�nition of better synthesis of ex-
perimental results and the consideration of other types
of edges.
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Figure 9: Mean square errors. Synthetic images: (a) step, (b) staircase and (c) pulse. Real images: (d) nuts, (e)
glasses, (f) Lena, (g) back, and (h) Sherbrooke.
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