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Abstract

A novel scheme for depth extraction is achieved using a mul-
tiple view ring camera system. The ring camera method cap-
tures a series of images of scene from a set of camera loca-
tions arranged in a circular ring. Tracking of scene features
through this sequence realizes circular feature trajectories.
The recovery of depth can be obtained with this method by
determining the diameter of the circular trajectory. Depth
obtained using the ring camera strategy is shown to be more
accurate and more robust than binocular methods. In addi-
tion, associated with this method is a trajectory confidence
measure which provides a good and reliable indication of
depth accuracy.

1 Introduction

Depth maps from stereopsis methods that are both accurate
and dense are difficult to achieve because of three funda-
mental problems associated with the depth extraction pro-
cess: (a) feature correspondence, (b) occlusion, and (c) non-
constant image brightness[3]. In this paper, we address the
problem of accurate feature correspondence using a multi-
ple baseline stereo system. The multiple baseline system
allows the tracking of image features through a sequence of
images captured at closely located positions, thus, enabling
the use of moderate to large baselines without introducing
additional ambiguity in the feature correspondence process.
In addition, the utilization of multiple views typically pro-
vides a system which is more robust to image noise and less
sensitive to occlusion.

In contrast to typical multiple baseline systems which
simply displace a camera laterally [11, 13], we introduce
the ring camera method for accurate depth measurement
which acquires a sequence of images captured from loca-
tions arranged in a circular trajectory. Selected tracked fea-
tures trace a circular trajectory whose diameter directly cor-
responds to binocular disparity. This work differs from pre-
vious research in multi-view depth measurement systems in
two main characteristics: (a) the use of a geometric based

Figure 1: The Ring Camera Experimental Organization

confidence measure and (b) the large number of camera
views used (more than 10). The geometric based confi-
dence measure, based on multiple camera locations, is used
to evaluate the confidence of the resulting depth measure-
ment. Utilization of a large number of camera views per-
mits robust accurate statistical depth measurement methods
to be employed and increases the sensitivity of the confi-
dence measure. Additional notable features of the ring cam-
era method include the ability for anisotropic depth mea-
surement, comparison of different feature types using depth
confidence, and utilization of camera views placed along
two dimensions.

For this system depth is reconstructed from a set of im-
ages without motion; obtained using either a moving camera
and static scene or an array camera. In addition, we assume
that the camera system has an optical axis that is orthogo-
nal to the image plane and that the optical axis is fixed for
all camera locations. The organization of the ring camera
is shown in Figure 1. In this paper results are presented
to demonstrate several advantages of this system which in-
clude: increased accuracy in comparison to binocular sys-
tems, increased robustness to image noise in comparison to
a two view system, and a geometric based confidence mea-
sure which reliably determines depth uncertainty.



The remainder of this paper is organized as follows.
First, closely related multiple viewpoint depth extraction
methods are briefly discussed. Second, the ring camera
method for measuring depth is described. Finally, results are
presented to demonstrate the accuracy, robustness, and per-
formance of the geometric confidence measure in the ring
camera system.

2 Previous Work

In binocular systems with two horizontally displaced cam-
eras, depth is typically recovered from the two-dimensional
image projections associated with the displaced cameras.
The simple relation that relates disparity to depth is given
in equation 1. The disparity ( ) is the relative shift of a fea-
ture from the left image to the right image, the baseline ( )
is the displacement of the two cameras, and is the focal
length of the camera system.

(1)

The inverse relationship exhibited between depth and dis-
parity indicates that more precise depth results arise when
larger camera baselines are used. Unfortunately, larger cam-
era baselines complicate the task of feature correspondence.
Additional phenomenon which complicate the correspon-
dence problem include lack of image texture, regularly re-
peated image patterns, occlusion, and photometric distor-
tions/lighting affects. To address these problems a number
of approaches have been investigated in the literature. For
instance, integration approaches have been studied where
the process of feature matching is integrated with various
other stages of the stereo process such as surface interpola-
tion [6, 15, 9]. Area-based methods have sought better cor-
respondences by investigating various techniques for select-
ing an appropriate window size for a given feature [8, 4, 10].
In addition, multiple view systems have been employed to
facilitate feature correspondence which have displaced a sin-
gle monocular camera [11, 13, 5, 1] or utilized camera array
systems [2, 7, 17, 12, 16]. The method presented here in-
volves a feature tracking method using multiple sequential
views.

Feature tracking methodologies are generally employed
to sequences generated by the motion of a single monoc-
ular camera. The most common situation involves the lat-
eral displacement of a single camera to generate a sequence
of views. These systems typically generate a number of
disparity and baseline estimates associated with a
single feature which are integrated to determine the fea-
ture’s depth. Matthies, Kanade, and Szeliski [11] and Han-
mandlu, Shataram, and Sudheer [5] integrate different depth
estimates using a Kalman filtering strategy. In [13] Oku-
tomi and Kanade perform feature matching using a sum-of-
squared differences (SSD) operator with respect to inverse

distance (disparity) which exhibits a unique matching min-
imum when the SSD results from the multiple stereo pairs
are summed. Baker, Bolles, and Marimount [1] have im-
plemented a single camera system which allows linear mo-
tion and reconstructs depth utilizing epipolar geometry and
Kalman filtering.

Array camera systems which use multiple cameras have
also been introduced to improve the tradeoff between es-
timation accuracy and matching difficulty. Kanade et. al.
[7] use the model presented in [13] to design a five cam-
era video-rate multiple baseline array camera system with
vertical and horizontal camera translations. Nakamura and
Matsuura et. al. [12] use a array of cameras to resolve
occlusion by introducing occlusion masks which represent
occlusion patterns in real scene. Cox et. al. [2] develop
a maximum likelihood formulation of the N-camera stereo
problem. Zitnick and Webb [17] introduce a system of four
cameras which are horizontally displaced and analyzes po-
tential 3D surfaces to resolve the feature matching problem.
Tsai [16] introduces two similarity metrics in an array cam-
era system to obtain stronger evidence (peaks) for correct
disparity measurement, thereby providing increased robust-
ness to image noise.

The ring camera approach is a multi-view system that is
designed to improve depth accuracy by exploiting the place-
ment geometry of a larger number of camera positions and a
geometric based confidence measure. Most depth extraction
systems focus on known controlled motion in one direction,
while few have considered using a large number of camera
positions in both the X and Y directions. To investigate the
ring camera we have implemented a simple prototype sys-
tem which involves moving a camera in a circular trajectory
and reconstructing the depth from the sequence of images.

3 The Ring Camera

The depth estimation algorithm used in this paper requires
the acquisition of a sequence of images captured at equidis-
tant locations around a circle. For small distances between
image capture positions feature correspondence is facilitated
by tracking features through the sequence of images. Each
tracked feature traces out a circular trajectory through the se-
quence which provides a direct relationship to disparity cal-
culation. In Figure 2 images acquired from two views of the
ring camera system which correspond to the left and right
camera positions for a typical binocular system are shown.
Overlayed on these two images are the circular trajectories
obtained from tracking three chosen features with our ring
camera system. The trajectories in Figure 2 are obtained
from a sequence of images captured at locations for

. Camera location and are separated by
an angle increment of . For the ring camera
system the ( ) is defined as the diameter



of the best fit circle to the feature trajectory. In Figure 2,
it is denoted by , , and . The radial disparity corre-
sponds directly to binocular disparity when the degenerate
case of just two views obtained from camera locations and

is considered.

Figure 2: Shows a stereo right and left camera view with the
ring trajectory super-imposed

The ideal trajectory for correctly tracked image locations
is a circle. The deviation from a circular path for a given
trajectory can be attributed to several sources of error. The
major sources of error considered include camera position-
ing error , and tracking alignment error . In
the system, the camera is positioned by hand to pre-marked
locations, thus camera positions may not perfectly fit a cir-
cle and result in camera positional error. Non-constant im-
age brightness, lens imperfections, quantization effects, and
tracking algorithm limitations indicate that the tracking of a
feature region will not be precise and thus, a small amount
of error in tracking is accounted for. For this system, track-
ing is achieved using a standard sum-of-squared differences
algorithm. A feature is matched by minimizing the error as-
sociated with an image shift that lies within a given
search region. The error function is given by

(2)

and the trajectory point is given by

(3)

The measured trajectory locations are related to
the true locations by equation 4 which accounts for
system errors.

(4)

Assuming system errors have a Gaussian distribution,
a least squares regression involving all views achieves a
more precise estimate of the ( ) than
can be achieved using only one stereo pair. Circle-fitting is
performed using the Levenberg-Marquandt non-linear least

squares algorithm [14]. Given data points which
approximate a circle, the radial disparity(circle diameter

) and circle center are determined to minimize
the following error function where is the standard
deviation of the data point. The standard deviation as-
sociated with the data point is currently unknown, thus

is currently set to one so that all points are considered
equal in the circular fit algorithm. We minimize the mean
squared error which indicates the average squared deviation
of a trajectory point from the best fit circle.

(5)

The depth measurement associated with a tracked feature
point is estimated using the relation .

Initial conditions for the non-linear minimization proce-
dure are obtained using the trajectory data points .
The circle-center is initialized to be the center of mass of
the data points and the radial disparity is initialized to be
the average of the standard deviations in and . Conver-
gence typically occurs within a few iterations.

It has been shown that increased depth accuracy can re-
sult when more than two camera views are utilized [13, 11].
In the following we demonstrate mathematically that in-
creased accuracy can be achieved using a multi-view system
formulated in a non-linear least squares framework.

Consider the variance of our error function,

(6)

Define the random variable which is a function of the
random variables and by

(7)

The variance then becomes

(8)

Therefore, the variance in our error function decreases as
increases which indicates improved disparity and depth

estimation with a multi-view system.



4 Ring Camera Depth Accuracy

An experiment was conducted to measure the relationship
between depth measurement accuracy and the number of
camera views used. To avoid errors and issues associated
with precise camera calibration, the experiment recovers the
depth of a set of locations that lie on a planar surface. This
allows the matching of recovered depth values to a plane
which provides a calibration independent method for gaging
depth accuracy. For example, depth is recovered by approx-
imating the camera focal length and using the well known
equation . Depth values are then fit to a surface
using a planar least squares algorithm given accurately lo-
cated and positions [14]. The chi-squared error function
given below is minimized to determine the best parameters

which approximate the data where
is set to , because the standard deviation of the data is

unknown.

(9)

(10)

Depth accuracy is measured by taking the square-root of
divided by the number of features (eqn. 11).

Therefore, the accuracy corresponds to the average devia-
tion of a given feature from the best fit plane in the units of
centimeters.

(11)

Image data was acquired at equally spaced im-
age locations and tracking was achieved using all im-
age locations to formulate a circular trajectory. The use
of all camera locations in feature tracking avoids the con-
founding effect of the tracking algorithm and the “feature
correspondence” problem, when fewer image locations are
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Figure 3: Camera Views

utilized for disparity measurement. A different number

of camera locations was simulated by selecting an equally
spaced subset of circular trajectory points and using these
points in the non-linear circle fitting procedure. The po-
sitions of these camera locations are shown in Figure 3.
In Figure 3, locations marked less than or equal to
are included in the experiment where views are stud-
ied. In our experiments, we investigate the effect of using

camera locations on depth estimation accu-
racy.

The trajectory depth uncertainty measure is based on
how well a circle is fit to the feature trajectory data. The
chi-squared error for the circle least squares fit gives
a notion of this, but it requires normalization so circles of
different radii can be directly compared. The following
normalization is used as an indication of depth uncertainty
where is the number of points in the disparity trajectory,
and is the diameter of the best fit circle.

(12)

This measure gives the ratio of the mean circle error relative
to the circle radius.

4.1 Data Acquisition and Scene Description

Data is acquired using a simple experimental set up which
consists of attaching a Sony CCD video camera to a mech-
anism which mechanically constrained the motion of the
camera to a single plane. An image sequence was obtained
by manually displacing the camera in a circular trajectory.
Scenes are created by placing objects on a stage located ap-
proximately 56cm from the camera and capturing images to
be combined in a sequence. The ring camera baseline dis-
tance used for the experiments is .

The planar scene consisted of a textured flat surface
shown in Figure 4. The surface was inclined to the cam-
era with respect to the (horizontal) axis by an angle of
approximately . Depth measurements were made at 126
regularly spaced location in the leftmost camera location im-
age shown by the white dots in Figure 4. The samples were
organized in a regular grid pattern with a spacing of pixels.

4.2 Accuracy With Respect to Number of
Views

The features shown in Figure 4 were tracked using an image
window size of and a search region size of . The graph
given in Figure 5 shows the planar depth variation (eqn. 11)
for depth measurements versus the number of camera
views used in circle trajectory fitting. The graph shows that
the variation in depth improves as the number of cameras
used increases. An improvement of is achieved by in-
creasing the number of views from to views. Planar



Figure 4: Scenes and Selected Features: Letter Scene with
Tracked Features
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Figure 5: Depth Accuracy (cm) vs. Views

surface reconstructions using , , and camera views are
shown in Figure 6. These surfaces vary in intensity accord-
ing to depth and give additional insight to the benefit of a
multi-view system. When two views are used the recon-
structed surface resembles a small step edge rather than a
single planar surface. The introduction of additional views
(8 and 32) allows us to see the true planar surface with a
higher degree of accuracy. Therefore, additional views us-
ing the ring camera method produce more accurate depth
estimates.

4.2.1 Accuracy Prediction from Depth Confidence

An important novel feature of the ring camera system is the
circularity confidence measure which can be used to pre-
dict depth measurement accuracy. To demonstrate the abil-
ity of the confidence measure in predicting depth measure-
ment accuracy the previous experiment is repeated, but with
a smaller tracking window. The error in surface pla-
narity is very large ( cm) because the tracking algorithm
was unable to track some of the feature locations. The fea-
ture points are then ranked according to their confidence
measure and the experiment is repeated using the most con-
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Figure 6: Planar Surface Reconstructions: (a) 2 Views (b) 8
Views (c) 32 Views

fident subsets of the tracked locations. Figure 7 shows the
results of selecting the most confident , , , and

of the features. The rejection of the least confident
of the features allows all the incorrect trajectories to be

removed, thus, depth accuracy is comparable to the first ex-
periment. Furthermore, as additional less confident features
are removed consistency of the selected subset continues to
improve.

4.2.2 Robustness With Respect to Image Noise

The robustness of the system to noise is evaluated by adding
different levels of random Gaussian noise to the letter scene
shown in Figure 4 and repeating the experiment on the mod-
ified sequence with a window size of . Figure 8 shows
the depth variation versus the standard deviation of Gaus-
sian noise added to the sequence and the signal level of the
image is approximately . The results in Figure 8 demon-
strate that the system is able to achieve more accurate results
than a 2 view system for the noise levels considered. Fur-
thermore, in addition to being more accurate, using a larger
number of camera locations results in a system that is less
sensitive to noise. For example, the accuracy of the system
changes very little when 32 views are utilized, while a no-
table change is accuracy is realized for two and four views.
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5 Occlusion Boundary Detection and
Curved Surfaces

The feature confidence measure of the ring camera may be
used to identify problem regions within the scene. In tra-
ditional binocular stereo, confidence is typically determined
by examining intensity variances to identify regions of in-
sufficient texture or by employing the left-to-right consis-
tency constraint to identify occlusion regions. For the ring
camera, the confidence measure is used to identify problem
areas. This is demonstrated for the smooth cylindrical object
shown in Figure 9.

The cylindrical can used for this investigation is wrapped
with highly textured paper to facilitate feature tracking. An
image window size of 21 was used with a tracking search
region of . The feature locations were set at a grid spac-
ing of pixels. Features were tracked starting from the
o’clock position and traversing in the counter clockwise di-
rection. The reconstructed depth maps for and views

are shown in Figure 10. A number of incorrect depth mea-
surements may be observed at the external boundary region
of the can. In Figure 11, the least confident depth values
are set to black. Note these regions correspond, in general,
to the incorrect pixels in the depth map and to occluding
boundaries in the scene. The left boundary of the can is a
problem because feature points are occluded during track-
ing. This does not occur from the right side of the can be-
cause of the ring cameras o‘clock starting location. Occlu-
sion at the open top of the can also causes problems.

Figure 9: Cylindrical Can Scene (a) left camera view (b)
with feature locations

Figure 10: Depth Maps Generated for the Can Scene: (a) 2
Views (b) 32 Views

Figure 12 presents a surface description of the recon-
structed can for , , and camera views. Here we observe
the improvement with which we are able to resolve curved
surfaces compared to the binocular case.

6 Conclusion

In this paper we have presented a ring camera method for
disparity measurement. The method has been shown to have
better accuracy and robustness to image noise than two cam-
era views. In addition, the disparity confidence measure is a
good indication of depth accuracy and can be used to iden-
tify occlusion regions, depth discontinuities, and areas of



Figure 11: Depth map for 32 views with uncertain locations
identified n black.

low intensity variation. The initial results are promising and
future work entails utilization of the disparity uncertainty
measure for adaptive feature selection. In addition, further
investigation will seek to resolve uncertain areas of the depth
map through exploration of different window sizes for corre-
lation, partial trajectory fitting, and starting feature tracking
at different image frames to resolve occlusion. We also seek
to relax the constraint that the camera axis has to be orthog-
onal to the image plane without compromising the accuracy
of our depth estimates.
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