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Abstract

A representation of polyhedral environment in a stereo

pair of images is proposed and its three-dimensional re-

covery is presented. The polyhedral environment is rep-

resented as a number of image-to-image mappings in

the form of matrices, each corresponding to a planar

surface in the environment. Unlike a mere depth map,

such a representation is segmented, in the sense that

di�erent surfaces in the environment correspond to dif-

ferent matrices and are separated. A mechanism is pro-

posed to recover the representation even for scene that

is not densely featured. Experimental results on typical

polyhedral scenes are given.

1 Introduction

Reconstructing three-dimensional (3-D) information of
a scene from its images, to the extent that surfaces and
objects in it can be separated, is a basic goal of com-
puter vision. Stereo vision is an important and well-
studied vision cue for that. Surveys on stereo vision
work over the years can be found in [1, 3].

To solve the reconstruction problem, the most im-
portant and the only scene-independent clue that stereo
vision can exploit is the epipolar geometry. For any fea-
ture in one image, there exists in the other image a line
named as the epipolar line on which the correspondence
of the feature must be located. So long as the spatial
relationship of the two cameras is known, the epipolar
line is predictable, and the originally 2-D search in an
image for stereo correspondence becomes a 1-D search
along the corresponding epipolar line. However, even
with such a useful constraint, matching features across
the stereo images still has ambiguity along the epipolar
lines. The classical approach of resolving the ambigu-
ity is to rely on two assumptions: the surface-continuity
or the surface-smoothness assumption, and the feature-
ordering assumption. The �rst assumes that the scene

is continuous or smooth, and the second assumes that
features in the two images follow the same left-to-right
order along the epipolar lines.

While the classical approach does give satisfactory
results over smooth scenes, it has limited performance
towards scenes with occlusions, for the two assumptions
are not valid across occlusion boundaries. There have
been extensions to the approach in the literature, which
typically disable the two assumptions locally at selected
places in the scene. However, the performance has been
limited, owing to the mere fact that the disabling deci-
sions are local.

In this paper, a representation of a polyhedral en-
vironment that is pictured in a stereo pair of images,
like the building structures in the aerial views of an ur-
ban city or the corridor in the stereo views of inside
a building, is proposed. The representation consists of
a number of image-to-image mappings in the form of
matrices, each corresponding to a planar surface in the
environment. Unlike a mere depth map, the represen-
tation is segmented, in the sense that di�erent surfaces
in the environment correspond to di�erent matrices and
are separated. The essence of the representation is that
it can be recovered through a simple mechanism even
for environment that is not densely featured. For scene
like a corridor, the representation is recovered not only
with sparse depth estimates over the edges of walls and
ceiling and oor, but also with the information that
which line segments in the images form a wall or ceil-
ing or oor in the environment. The representation
can be used not only for depth recovery as required in
autonomous navigation, but also for image transfer to
arbitrary viewpoints as required in virtual reality ap-
plications.

2 Preliminaries on Homography

An image-to-imagemapping was introduced recently by
Faugeras [2] for three-view problems, [6, 5], namely the



reprojection of a scene from two known views to a third
view, and the recognition of an object in a third view
using two �xed views as the reference. The mapping
can be described as the following. All pairs of image
positions (pi;p
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i
) in two images, so long as they are

projected from the same plane � in 3-D, satisfy
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where�= denotes equality up to a scale, andH� is a 3�3
nonzero matrix. H� characterizes the correspondences
between the images due to the plane �, and is referred
to as the homography (or the homography matrix) [2]
induced by �. It should be noted that epipoles (e; e0)
also satisfy the above equation.

3 Homography-based Stereo

3.1 Theory

In this section it is outlined how homography can also
be used in a two-view problem { stereo vision { for
resolving correspondence ambiguity. Being a clue of
relating image-to-image correspondences, homography
can be used in place of surface-continuity and feature-
ordering assumptions for resolving correspondence am-
biguity, so long as the scene can be approximated as
consisting of mainly planar surfaces. As to be explained
later, the use of homography also o�ers many advan-
tages over the use of the two assumptions.

If there is only a single planar surface � in the scene,
all correct stereo correspondences are captured by a
constant 3 � 3 nonzero homography matrix H� under
Equation (1). Suppose there are altogether P point
features of � which are visible in both images. Com-
bining the equations from all correct pairings, it can be
obtained that:

M� � vec(H�) = 0 (2)

whereM� is
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and vec(H�) is the 9�1 column vector expanded from
H�. Equation (2) is a homogeneous system of 2P linear
equations for the 9 unknowns in H�, and under correct
stereo correspondences nontrivial solution ofH� should
exist. The 2P � 9 matrixM� represents the matching
between fpig and fp0ig and is important. Hereafter it is
referred to as the correspondence matrix for the planar
surface �. Note that the epipoles already constitute
one point pair or two row vectors ofM�.

Suppose the total number of features of � which are
visible in both images, P , is such that 2P � 9. To have
non-trivial solution of H� Equation (2), the rank of
M� should be such that

Rank(M�) < 9 (3)

This is a distinct property of the correct solution to
the correspondence problem. In fact if it is known that
there is only a single planar surface in the scene, the
solution of H� in the system of Equation (2) should
be unique up to a scaling factor, and the rank of M�

should be exactly 8. Unless all correspondences are
correct, such a rank property is generally not satis�ed
if 2P � 9, and is unlikely to be satis�ed if 2P � 9.

Though inadequate to resolve all correspondence
ambiguity, the epipolar constraint plus reasonable
bounds of the disparity gradient are often enough
to resolve the ambiguity of a few correspondences.
One mechanism of solving the stereo correspondence
problem is therefore the following. Correspondences
unique under the epipolar constraint are �rst extracted.
Should such initial correspondences exceed three point
correspondences or the equivalent, they together with
the known epipoles allow 8 or more row vectors ofM�

to be available. Such initial row vectors are a subset of



the row vectors ofM�, and the matrix they form in the
same manner asM� is hereafter referred to as the ini-
tial correspondence matrix iM�. With iM�, H� can
be determined up to a scaling factor from the nullspace
of iM�. Through Equation (1), such an H� can then
be used to extrapolate all other correspondences due to
the planar surface.

The initial correspondences need not be over three
points. If the surface boundary is visible partially or en-
tirely, often junctions are found along it, and the stereo
correspondence of a single junction with two branches
is already equivalent to three point correspondence. A
junction with two branches is hereafter referred to as
an L-junction. L-junctions are used instead of points
in this work, as they are more distinct and more sparse
and thus more likely to have unique correspondences
under the epipolar constraint.

Yet, when extended to a more realistic case where
there are multiple surfaces f�g in the scene, the above
solution mechanism has a complication. It is not unrea-
sonable to assume three initial point correspondences or
one initial L-junction correspondence per surface to be
available from the epipolar constraint. However, such
initial correspondences over di�erent surfaces are all
mixed together, as the surfaces are not segmented in
the images. In other words, the initial correspondence
matrix iM� for individual surface � in the scene is not
explicitly available. Rather, the row vectors of matrices
fiM�g for di�erent surfaces f�g are available as row
vectors in a single matrix iM, in no particular order. A
mechanism is therefore needed to sort out which of the
known correspondences or the row vector pairs are from
which surfaces, i.e., to segment iM into iM�'s due to
di�erent surfaces �'s. Below a procedure is described
that serves that purpose.

3.2 Initial Homography Estimation

If the initial stereo correspondences are all unrelated,
like in the form of individual point correspondences, the
homographies contained in them have to be estimated
through a subspace clustering process.

However, this work assumes the context of polyhe-
dral scenes like outside or inside building structures,
and often L-junctions are found in the images. Each L-
junction correspondence is the stereo correspondences
of two line segments and a point or equivalently three
points, and it is just enough to de�ne with the epipole
pair a homography. The problem then becomes how to
group the homographies which are de�ned by the ini-
tial L-junction correspondences into di�erent sets, each
set being a collection of homographies which are alike
enough (meaning that they are the same surface of the
environment), and di�erent sets having homographies

di�erent enough.
A simple solution to the above is the nearest-

neighbor clustering algorithm [4]. The algorithm re-
quires a measure of inter-homography distance and
a threshold to decide whether any two homographies
should be treated as from the same surface or not.
In the implemented system, the inter-homography dis-
tance is de�ned not in the homography space, but in
the stereo images directly, so as to put emphasis on the
aspect of image-to-image mapping a homography repre-
sents. More precisely, to �nd the distance between two
homographies, the image features de�ning one homog-
raphy are pushed through the other homography and
the mapping errors so resulted are noted. The inter-
homography distance is de�ned as the maximum error
between the measured position and the mapped posi-
tion of image feature. The threshold used in the system
is
p
10 pixels. That is, for two homographies to be re-

garded as from the same surface, the mapped position
of an image feature should not be more than

p
10 pixels

away from its measured position.
Once the initial homographies are clustered into sets

of similar ones, a homography is further de�ned for each
set as a whole using the least-squares method . Such ho-
mographies are then used to extrapolate feature corre-
spondences in the images, and be con�rmed by them
if the extrapolations are supported by image measure-
ments.

3.3 System Overview

A polyhedral environment, or any environment made
from planar surfaces, when observed through stereo
imaging can therefore be represented as a collection of
homographies. Such a representation can be recovered
using a mechanism as outlined below.

An overview of the recovery mechanism is shown in
Figure 1. Line segments are �rst extracted from the im-
ages through edge detection and line �tting processes.
L-junctions are then hypothesized from the line seg-
ments through a corner detection process. L-junctions
which have unique correspondences under the epipolar
constraint are identi�ed. The unique correspondences
are then supplied to the subspace clustering process de-
scribed in Section 3.2, which extracts the homographies
present in the stereo images. For any planar surface
in the scene, as long as one L-junction correspondence
over it is initially available, the associated homogra-
phy can be estimated. With more than one initial L-
junction correspondence, the homography is even con-
�rmed.

Through Equation (1), the homographies can then
serve as mappings to extrapolate correspondences of
all other features in the two images. For any feature
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Figure 1: Overview of the recovery mechanism.

in one image, the identi�ed homographies can be used
in turn to predict its correspondence in the other im-
age. In the implemented system only line segments are
involved in this extrapolation process. Once the cor-
respondence extrapolation and con�rmation of homo-
graphies are completed, the representation of the en-
vironment as a number of homographies is available.
The representation comes with a segmentation of the
environment, i.e., di�erent planar surfaces in the envi-
ronment correspond to di�erent matrices in the repre-
sentation, and it is known which features in the images
are contained in which matrix. This representation can
be used to generate an occupancy map of the environ-
ment over the space around the detected line segments.

In the proposed system homographies are used in
place of the surface-continuity and feature-ordering as-
sumptions in resolving the correspondence ambiguity
along epipolar lines. This has a number of advantages.
Since smoothness is not assumed for the scene, occlu-
sion is allowed and it a�ects the correspondence process
only in the form of additional homographies. Moreover,
as soon as the homographies are extracted, not only
the features are matched, there is also a decomposition
of the scene into various surfaces. Such an approach
is particularly suitable for scenes which are composed

mainly of planar surfaces.

4 Experiments

The stereo vision system has been implemented and
tested with various image datasets. Two sets of real im-
age experiments are presented here. Both sets of image
data are obtained from the Department of Computer
Science of University of Massachusetts at Amherst. The
epipolar geometry of each stereo pair is known. The fo-
cal lengths and the baseline width of the stereo geom-
etry are unknown though, and they are assumed with
arbitrary values in the presentation of the results.

For all image data sets, line segments are �rst ex-
tracted from images through Canny edge detector and
the line-�tting subsystem of Nevatia-Babu LINEAR
package. A simple corner detector is then applied to
the line segments, examining if any two lines segments
have their end points nearby and have their orienta-
tions di�erent enough, thereby proposing an L-junction
at the intersection of the line segments if they do.

Figure 2 shows stereo images of a corridor with
two walls, accompanied with the extracted L-junctions.
Initial L-junction correspondences unique under the
epipolar constraint allowed two homographies to be
identi�ed. As shown in Figure 3, one is for the wall on
the left and another one for the wall on the right. Care-
ful inspection of the stereo images can tell that there
are altogether three vertical walls. However, the two on
the left are so close to each other that they were indis-
tinguishable under the thresholds used in the system. It
is expected that if the scene is viewed at a closer range,
the image resolution would allow the two to be sepa-
rated. The homography matrices estimated are then
used to extrapolate other stereo correspondences and
be con�rmed by them. The reconstruction result is il-
lustrated with a reprojection of the environment from
an oblique angle in Figure 4.

Figures 5, 6, and 7 show results over another set of
image data. The stereo images are those of a hallway.
The hallway consists mainly of �ve surfaces, two hori-
zontal surfaces being the ceiling and oor, two vertical
surfaces being the left and right vertical wall, and one
being the end of the hallway, i.e., the exit. This hallway
is so sparsely featured and the contrast of the imaging
is so weak that almost no feature can be found except
on the surface of the exit. The L-junction correspon-
dences on the four horizontal and vertical surfaces are
shown in the top of Figure 6. Even with as few as one
L-junction correspondence over each of these four sur-
faces, they are enough to estimate the corresponding
homographies. The exit has more features detected,
as shown in the bottom of Figure 6. All the �ve sur-
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Figure 2: Stereo images of a corridor and preliminary
processings.
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Figure 3: Extracted homographies (corridor).

faces were recovered at the end of the clustering process.
There are tiny surfaces close and parallel to the surface
of the exit, but under the thresholds of the implemented
system they are indistinguishable. Again, it is expected
that when the robot gets closer to the exit, the di�er-
ence between their homographies and the homography
of the exit will be signi�cant enough for them to be
isolated. This pair of stereo images is so sparsely fea-

Figure 4: Bird's eye view according to reconstruction
results (corridor).

tured that it presents great di�culty to generic stereo
vision to recover a dense occupancy map of the environ-
ment. Yet, with the proposed representation and the
recovery mechanism, how many surfaces there are and
where they are positioned can be estimated. To illus-
trate the performance of the system, a side view of the
reconstructed environment is shown in Figure 7, which
is a reprojection from a small elevation angle. Part of
the exit surface and the oor are occluded by the left
wall in this elevated view.

image 1 & junctions image 2 & junctions

initial L-junction correspondences

Figure 5: Stereo images of a hallway and preliminary
processings.
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Figure 6: Five extracted homographies (hallway).

Figure 7: Side view according to reconstruction (hall-
way).

5 Conclusion

A new representation of polyhedral environment is pro-
posed and its recovery is presented. Experimental re-
sults on real images has been encouraging. Future work
will include further experiments over environments with
occlusions.
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