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Abstract

Autonomous navigation applications demand sensors with
a low sample time to be able to increase speed. Stereo
vision algorithms that produce a dense disparity map
present a slow time response (half a minute per frame at
high resolution). We have developed a new cost function
for dynamic programming stereo algorithms, capable to
deliver dense disparity maps for single, high-resolution
scanlines at high speed (40 ms/line), even for wide
disparity rages (>100). We have tested the algorithm with
both synthetic and real image, and we have compared its
practical performance with other dynamic programming
algorithms. Our cost function is based on a weighted sum
of the squared intensity errors. Weight factors are based on
gradient values. The occlusion cost is not constant for the
whole image, instead we modify it depending on gradient
values of matched points. In this paper we present this cost
function, and compare its performance for autonomous
navigation applications with other dynamic programming
solutions.

1 Introduction

Autonomous navigation applications demand low sample
time sensors to be able to increase speed. Traditionally,
stereo vision algorithms presented high computation times
due to the complexity of the algorithms. Some real-time
applications have been reported, which provides depth
calculation at real-time, but they are usually based on
highly specialized hardware, meaning a high price. We
have tried to find an algorithm capable to provide
reasonably good depth estimations, in real-time, and for
large disparity ranges.

The key problem in stereo vision is to establish the
correct set of correspondences among selected features in
two or more images taken at the same time. Correctness is

measured, in general, by a cost function that incorporates
terms for similarity and smoothness constraints. The
matching problem is therefore stated as a constrained
minimization problem. Many different solutions have been
proposed. They can be classified according to the
characteristics of the optimization algorithm, the kind of
image features selected, the way they are described and
whether they are multiresolution or not. In addition, some
algorithms integrate different kind of image descriptions
and even they integrate different depth cues (vergence,
depth from focus).

Among this variety of algorithms, those based in
dynamic programming present nice characteristics for real-
time applications. Dynamic programming is an efficient
way to minimize a function of many discrete variables.
Epipolar geometry also contributes to speed up the search
for an optimum sct of matches because it reduces the
search space to one dimension. Joining both tools, and
assuming ordering constraints, search for correct matches
becomes a minimum cost path-finding problem. Even in
this case, algorithm performance will depend on the set of
image features selected, the way to establish the search and
the shape of the cost function.

Cox et al. have proposed a maximum likelihood
algorithm independent of selected matching primitives. In
their experiments, they use individual pixel intensities for
the matching process. Resulting algorithm provides a
dense disparity map without requiring feature extraction,
and avoids the adaptive windowing problem of arca-based
correlation methods. Resulting cost function is very simple
but presents multiple global minima. To deal with this
problem, they introduce cohesivity constraints by
searching for the solution that minimizes the number of
intra- and inter-scanlines disparity discontinuities.

Intille and Bobick proposed a different approach. They
based their algorithm on a data structure called Disparity-
Space Image, and used it to look for matches and
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occlusions simultaneously. To avoid multiple global
minima, they forced the correct path to pass trough some
points called Ground Control Points (GCP). Those points
are correct matches determined, by correlation, in a
previous step to the dynamic programming algorithm. The
cost of avoiding a GCP is infinitum. Other algorithms use
cost functions based on correlation factors, but as out main
interest was to obtain a fast algorithm, we looked for
simple, fast cost functions, but still able to produce good
disparity estimations.

Section 2 of the paper describes our cost function. First
we introduce the general schema of DP algorithm, and
describe simple cost functions previously published. Then
we criticize those functions and propose a new cost
function. Section 3 presents the results of our tests,
comparing our cost function with others. Section 4
summarizes our conclusions.

2  Cost Function Definition.

2.1

To apply a dynamic programming (dp) algorithm, a cost
function to measure the quality of the solution has to be
defined. Of course, for a given pair of images, optimum
solution (minimum cost) will vary for different cost
functions. Search space may be viewed as a square matrix,
where each node Nij represents the cost of matching the
first i features of the left image with the j first features of
the right one. Assuming that the ordering constraint apply,
the cost of adding a new node can be:

1) when feature i matches feature j: cost will be that of
the match.

2) when feature i doesn't appear among the j first
features of right image: i is a left occlusion feature.

3) when feature j doesn't appear among the i first
features of left image: j is a right occlusion feature.

Schema of a generic DP Algorithm
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Figure 1: Possible paths and costs under ordering
constraint assumption.

Those different cost values define the shape of the
search space. Some authors have selected edges as
primitives to be matched. Although edges are more reliable
candidates for matches, this kind of algorithms will
produce sparse depth estimations. On the other hand,

matching pixel intensities is more sensitive to noise in the
image.

Working with epipolar images, correct matches are
restricted to lie in the same scanline. Resulting complexity
of the algorithm is O(n m Ad), where n, m are image
dimensions and Ad is the disparity range. In general, as Ad
is small compared to image dimensions, is neglected and
complexity is proportional to the number of pixels in the
image. In real-time applications it is important to
determine the proportionality factor because, it will affect
directly the final execution time.

Cox et al. derives a cost function based on pixel
intensity differences. They assume that pixel intensity
follows a normal distribution of known variance. Cost of a
match takes the form of a sum of squared errors. Occlusion
cost is constant for the whole image, and its value depends
on gray distribution variance and estimation of the number
of occluded points in the image. They also apply a
cohesivity constraint, implementing a scarch for the
solution with fewer discontinuities in disparity values.

Intille and Bobick faced the problem in a different way.
First they built the Disparity-Space Image, based of pixel
intensity differences for a set of disparity values. To reduce
the effect of noise, computation is done using a window
centered in the pixel. As flat areas in the image produce
flat areas in the search space, they introduce the concept of
Ground Control Points, restricting valid solutions to go
through these points. Ground Control Points are supposed
to be correct matches and they are determined in a
previous step by correlation.

2.2 An adaptive cost function

A cost function has two different parts to be defined:
a) The incremental cost of a match.
b) The cost of occluded regions.

intensity intensity
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Figure 2: Quantization noise effect

In general, simple cost functions doesn't include any
factor related to the confidence level for the match. Figure
2 presents a contour point (1;) that is to be matched. Due to
quantization noise, intensity difference between 1, and 15 is
less than between 13 and r;, which should be the correct
match. If we weight de intensity error inversely to gradient
value, the match (13,13) will became less expensive than
(14.13). To achieve this goal, we introduce use the measure
of evidence defined by Scharstein. Evidence includes in a
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single value similarity and confidence. Given a pixel on

each image, with gradients g(xl,yl) and g(x; +§(,yl +6y)

the evidence for that match is:

E(X17YI76) |g1|
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where Ois the disparity and O is a parameter to balance
both terms, the first one accounting for the confidence
level, and the second one for similarity. We change this
definition to obtain an inverse measure of evidence. We
call this new measure Modified Evidence:

2. 255- E(X,y,é)
ME(x,,y,,0) = 5101 b=,

Figure 3 shows the contour plot of the modified evidence
measurement. ME ranges from 0 for two points with
absolute gradient values of 255, and 1 for opposite gradient
values. Points in planar regions have a modified evidence
of 0.5. A point with low modified evidence will produce
always a low increase in the cost of the path going through
that node. In fact, ME is only a function of the gradient
value, so we will use the following representation:
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where r is the row been studied, and i,j are the position of
candidates along the scan line. Due to this characteristic,
ME can be tabulated easily.
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Figure 3: Contour map of modified evidence

The other key factor of the cost function is the cost for
an occlusion. If this cost is sct to 0, then a trivial solution
occluding every point in the image will always be found.
The cost of a known occluded point should be zero,
because it is a good match. On the other hand the cost of
wrong occlusion point should be infinitum because it

wouldn't be allowed. If the cost is kept constant, we have
refused to identify occluded points.

It is very difficult to identify occlusion points in an
image. Several rules can be applied. Occlusion points are
related to disparity discontinuities, and they appear in the
contour of objects, so there is a relation between
occlusions and gradient values. This relation is not
straightforward because not every change in the intensity is
caused by an object boundary. In fact, the majority of the
occlusions follow the following patterns:

a) Left occlusions: Start inside an object (a
relatively flat area of the image) and finish in
an object boundary (not necessarily a point
with high gradient).

b) Right occlusions: Start in the contour of an
object and finish in relatively flat area of the
image (inside another object).

Slanted surfaces introduce a different kind of occlusion
points, those derived a continuously changing depth. These
points are not real occlusions, but a discrete algorithm such
as dynamic programming has to introduce an occlusion
point to allow a jump in disparity.

In DP algorithms it is not possible to take a decision
based on future ones, so it is impossible to know where a
left occlusion starts or ends. In any case, and trying to
introduce the knowledge we have at each moment about
occlusions, we have modeled the cost of occlusions as a
function of the modified evidence. If a candidate match has
a low modified evidence value, it is probably a correct one,
and therefore occlusion cost should be very high. On the
other hand, if the modified evidence is small there is no
information to determine if the match is correct or if it is
an occlusion, apart from the intensity difference between
both points. The form of our cost function for occluded

points is:
W(g’z)ér)EH
OC(gl(ral.)ag:r(rn.j)):Klg+K2e = D(4)
0 0

figure 4 shows the shape of this function for different
values. Occlusion cost can also be casily tabulated to
reduce execution time. The overall cost function for our
algorithm presents 3 parameters:

* K;: represents the minimum cost of an occlusion.
This should be slightly bigger than the maximum
allowed difference in gray level. For example, for a
maximum change in intensity of 10 levels,
assuming gradient zero for both points, K; should
be 101 (10%+1).

* K.,: represents a general factor to increase occlusion
cost.

e Kj;: determines the rate of change in the variable
part of occlusion cost.
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Figure 4: Shape of Occlusion Cost function.

3 Experimental Results

As our claim is basically related with the practical
application of the algorithm, its validation depends on the
experimental results achieved. We tested this algorithm
extensively using both synthetic and real images. We
measured its sensitivity to the parameters, to noise and to
increasing disparity ranges. We also compared this
algorithm with Cox algorithm, and with the simplest cost
function, the sum of squared intensity differences, with
constant occlusion cost. We didn't check Intille's
algorithms because some aspects of its implementation
were not clear, basically, the actual way to determine GCP.
Cox algorithm implementation is available on the net, and
only modified that implementation to reduce the amount of
dynamic memory allocation, replacing dynamic allocation
with static arrays.

The main difficulty in testing stereo algorithms is the
lack of ground truth information. In general only printed
images are available. So it is very usual to obtain similar
disparity maps without been able to state which one is
more accurate. Lately, there is an increasing interest in
providing full information test images. Froéhlinghaus gives
public access to a synthetic stereo including dense ground
truth information and occlusion maps for both left and
right images. In addition, the same stereo pair is available
with different noise levels.

We have run the algorithm for 126 different
combinations of the parameters, K, 0 [37,401] (6 to 20 in

gray difference), K, 0[1,30] and K, 0[0.01,0.5]. for every

noise level. We also run Cox algorithms for 20 different
parameter configurations. Tables 1 and 2 resume the
results of the tests and figures 6 and 7 provides a graphical
representation of the data.
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Figure 5: Frohlinghaus synthetic stereo pair. (a) left

image, (b) right image, (c) expanded (x21.25) left disparity
map. (d) Left oclusion map.

noise | Mean | std | max. | min.
0 79% | 3,7 |85,4%| 68,9%
1 79% | 3.1 |83,6%| 69,1%
10 77% | 2.4 | 81% | 69.8%
100 | 66.2%|11,3|77,5%| 36,3%

table 1: Percentage of correct matches for our algorithm.

noise | Mean | std | max. | min.
0 82,5% [ 0.82| 84% | 80,9%
1 73,3% | 10,8 | 83,4% | 49.8%
10 44% | 18,3180,2%] 19,18%
100 | 19,4% [ 9.,45|45,9%| 8.8%

table 2: Percentage of correct matches for Cox algorithm.

Results for the simplest cost function are omitted
because for every parameter choice there were clearly
inferior to the other algorithms.

For noiseless images, both algorithms perform quite
well. Our algorithm presents a wider excursion in
performance, but in general (mean value) is similar to Cox
algorithm. As noise level increase our algorithm performs
better not only in the average case, but also when
parameters are correctly tuned. Our algorithm presents a
small excess of occlusion points. In noiscless images this
excess ranges from 0.2% to a maximum of 3.8%, with a
mean value of 1.57%. In the worst case (noise level 100),
the minimum percentage is 0.34%, the maximum 16,76,
and the mean value is 3,6%. For Cox algorithm, this value
is bigger, ranging from 3,42% to 14,3% without noise and
from 12,4% to 59,6%. Those values are calculated with
respect to the number of occluded points in the image.
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Our algorithm, including gradient calculation for both level doesn't affect execution time. Average execution time
images, performs 2.46 times faster than Cox algorithm. In  for simplest cost function was 802 ms. All runs were made
particular, average time for our algorithm was 923 ms, for a disparity range of 20, in a Pentium MMX at 200 Mhz,
while average time for Cox was 2275 ms. Differences with 128Mb of RAM.
among different runs where always less than 50 ms. Noise
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Figure 6 : Correct disparity values in our algorithm for differen noise levels and parameter configurarions
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Figure 7: Correct disparity values in Cox algorithm for different noise levels and parameter configurations.
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Figure 8: (a) Results of our algorithm (disparities scaled by 10, and with a bias of 5). (b) Error meaused: white means
correct occlusion points, black means wrong occlusion points, 127 is for disparity error 0. Other erros are represented as
127+(10 error), according to error sign. () and (d) are the same as (a) and (b) for Cox algorithm.

We have also tested both algorithm using some typical
real images: parking meter sequence, ball and epi
sequence. In general, exact coincidences are about 65% of
the image, and approximately 85% presents a difference
bigger than 1. We have seen that our algorithm performs
faster than Cox as the range of disparity values increases,
this is because our algorithm is approximately 5 times
faster than Cox without taking into account the time for
calculating gradients values, which is only proportional to
image size. This situation can be seen in figure 9.

To finish this section we present another test for our
algorithm. We placed a stereo pair on top of our B-21
robot (‘Trasgu'). We looked to a corner of our lab. The
filing cabinet was about 6 meters away from the cameras,
distance between the back wall and the front of the cabinet
was 1.4 meters and the table was perpendicular to the wall
and begun 1.2 meters before the cabinet. In this situation
we measured the distance using the sonar ring and the
stereo pair. We only provided the results for one line,
comparation of achieved results can be seen in figure 10.
Execution time was less than 80 ms for 100 disparity
values.

x 10" Execution time as a function of d, n and m (in ms)
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Figure 9: Execution time as a function of maximum
disparity and image size

4 Conclusions

We have derived a cost function for a dynamic
programming sterco algorithm, which presents fairly good
disparity estimations for a wide range of images. Execution
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time is low enough to apply the algorithm in autonomous
navigation applications. For distant objects this algorithm
may represent a valuable sensor for the robot as sonar
decrease their performance. We have achieved these
results by weighting the squared intensity difference
between candidate matches. The weighting factor is an
adaptation of Scharstein measure of evidence. We have
inverted and normalized values, so that our modified
evidences ranges from O for a candidate mach with high
and equal gradient values, and 1 for points with high and
opposite gradients. In addition occlusion penalty is not
constant for the entire image. Candidate matches with a
low modified evidence value are penalized with extra
occlusion cost, as they are probably a good match.

-1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2

Angle
Figure 10: Depth value comparison between stereo
algorithm and sonar. Image resolution is 768 x 576. The
selected row is marked by a green line, which roughly
corresponds to sonar height. Occlusion points have not
been represented for more clarity. Optical axis corresponds
to an angle of -1.57 radians.

We have extensively tested the resulting cost function.
We have shown that parameters are easy to tune, and the
resulting algorithm is quite robust in the presence of noise.
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Figure 11: Some d1spar1ty images obtamed with our stereo algonthm The number at the left represent the scaling of
image. All disparity values has an initial offset of 5 (0 means occlusion)
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