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Abstract

It is well known that stochastic models, such as
MRF and AR model, su�er from their poor capabil-
ity to describe complicated textures. By introducing
�lters into these random �eld models appears to be a
new approach to overcome the problem. In this paper,
we present a new model for texture analysis, which in-
tegrates �lter theory into random �eld based on Max-
imum Entropy theory. And parameter estimation em-
ploying Markov Chain Monte Carlo (MCMC) is pro-
posed for this new model.
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1 Introduction

AR model and MRF model have been applied to the
�eld of texture research many years ago[1], [2], [3], [4].
The randomness in texture is the main reason why peo-
ple consider random �eld as one of possible ways to
model and analyze texture images. But these random
�eld models seem not adequate to represent the texture
image e�ectively.

Intuitively, texture seems to stand between noise
and signal. If we choose random �eld as texture model,
then our model is likely close to noise and far from sig-
nal. Actually, when facing the task of shaping random
�eld into texture models, people have di�culty in im-
posing proper constrains on random �elds to bring the
structure information into texture models.

The FRAME model, proposed by Zhu [5], intro-
duces �lters into random �eld models to extract tex-
ture features. This idea combines �ltering theory and

Markov random �eld modeling through the maximum
entropy principle. With FRAME model, Zhu has tried
to interpret and clarify many previous concepts and
methods for texture analysis and synthesis from a uni-
�ed point of view[6].

In this paper, we propose a di�erent model of inte-
grating �lter theory with random �eld. The new model
is called maximum entropy random �eld model. In this
texture model, we use �lter to directly describe the
contextual constraints in texture. Maximum entropy
method was employed to construct the joint probability
distribution for texture image. For the purpose of �t-
ting this maximumentropy random �eld model to natu-
ral texture, we propose a parameter estimation method
based on MCMC.

This paper is organized as follows. Our new tex-
ture model will be explained in section 2, its MCMC
parameter estimation method in section 3 and experi-
ment results in section 4. Section 5 is conclusion and
future work.

2 Maximum Entropy Random

Field Model

The objective of random �eld texture modeling is to
�nd the contextual constraints in texture and describe
it. Maximum entropy random �eld model proposed in
this paper assumes the contextual constraint, and em-
ploys maximum entropy method to construct the joint
probability distribution for texture image.

The reason for the choose of maximum entropy
method (MEM) is that MEM suggests one joint prob-
ability which has the greatest entropy after meeting



given constraints. So this joint probability distribution
means to satisfy the constraints along some dimensions,
and at the same time, to be as random as possible in
other unconstrained dimensions, for entropy is a mea-
sure of randomness.

2.1 Maximum Entropy Method

Maximum entropy (ME) is an important principle in
statistics for constructing a probability distribution p

on a set of random variables X. Suppose the available
information is the expectations of some known func-
tions �n(x), i.e.,

Ep[�n(x)] =

Z
�n(x)p(x)dx = �n; for n = 1; � � � ; N:

(1)
Let 
 be the set of all probability distribution p(x)
which satisfy the constraints, i.e.,


 = fp(x)jEp[�n(x)] = �n; n = 1; � � � ; Ng: (2)

The ME principle suggests that a good choice of the
probability distribution is the one that has the Maxi-
mum entropy, i.e.,

p�(x) = argmaxf�

Z
p(x) log p(x)dxg; (3)

subject to

Ep[�n(x)] =

Z
�n(x)p(x)dx = �n; n = 1; � � � ; N; (4)

and Z
p(x)dx = 1: (5)

By using Lagrange multipliers, the solution for p(x)
is

p(x; �) =
1

Z(�)
expf�

NX
n=1

�n�n(x)g (6)

where � = (�1; �2; � � � ; �n) is the Lagrange parameter,
and

Z(�) =

Z
expf�

NX
n=1

�n�n(x)gdx

is the partition function that depends on �.

2.2 Deriving Maximum Entropy Ran-
dom Field Model

Maximum entropy random �eld model is proposed on
the base of an assumption about contextual constraints
for texture images. This assumption can be expressed
as follow:

There is one particular �lter fn, to which the re-
sponse of one observed texture has its pixel follow one
particular probability distribution. And because the
characteristics of homogeneous for observed texture is
assumed, so this probability distribution is taken as be-
ing equal to the histogram of this response image. This
constraints can be written as

Ef�(fn(N) � yj)g = p(yj)

fn(N) = �1x1 + �2x2 + �3x3 + �4x4 (7)

where p(yj) is the histogram of response image, N rep-
resent every small lattice on observed texture image,
with the same size as that of �lter mask fn. Here we
taken the size of �lter mask as 2� 2.

Based on these constraints, we obtain the following
joint probability distribution for every small lattice N
in observed texture using Maximum Entropy method.

f(N) = exp �
X
k2N

�k�(fn(N) � yk)

!

= exp (��(fn(N))) (8)

where �() is function of Lagrange parameters, and it
is calculated according to the histogram of response
image.

In the case that no other constraints are imposed on
observed texture, by following the form of joint proba-
bility distribution for Markov random �eld, we get the
joint probability distribution for observed texture as

f(I) = exp �

MX
x=1

NX
y=1

�(fn(Nx;y))

!

= exp
�
�
XX

�(fn � I)
�

(9)

where I is the texture image, the sum is carried out on
all small lattices across the observed texture.



The above equation is to be used by maximum en-
tropy random �eld model to describe texture pattern.
The function of � is chosen by experience as the shape
showed in Figure 1.

And there are experiment results indicating that the
response of very di�erent image to a wide variety of
�lters has quite similar histogram, so the shape of �
can be taken as the same.

There are two important features of this maximum
entropy random �eld model:

� Because the shape of � is �xed, so the feature of
observed texture depends on �lter fn to describe,
and this �lter need to be determined for one
particular observed texture through process of
parameter estimation.

� The parameters for �lter fn is actually the fea-
ture of observed texture. These parameters can
be used for texture classi�cation and segmentation.

3 Parameter Estimation Using

Markov Chain Monte Carlo

In maximumentropy random �eld model, it is the �lter
that determines features of texture, so this particular
�lter is the parameter required to be estimated from
one given texture images.

In the �eld of parameters estimation, Bayesian
method receives the most of recognition for a long time.
But, in many case, we have great di�culty in carry-
ing out parameter estimation with Bayesian method.
Markov Chain Monte Carlo is a new approach to facil-
itate Bayesian parameter estimation [7], [8], [9], [10].

From Bayesian inference, the joint probability dis-
tribution p(I; �) comprises two parts, a prior distribu-
tion P (�) and a likelihood P (Ij�). Specifying P (�) and
P (Ij�) gives a full probability model, in which

P (I; �) = P (Ij�)P (�) (10)

According to Bayesian theory, the posterior distri-
bution of � conditional on I is

P (�jI) =

R
P (�)P (Ij�)R
P (�)P (Ij�)d�

/ P (�)P (Ij�) (11)

For parameter estimation by way of Markov chain
Monte Carlo, we need to �nd out the conditional poste-
rior distribution for every parameter. This is the most
important part in the whole MCMC parameter estima-
tion.

Assume there is no prior on the distribution of �, so
likelihood is used to represent the posterior distribution
of P (�jI),

P (�jI) / exp �

MX
x=1

NX
y=1

�(fn(Nx;y))

!

= exp
�
�
XX

�(fn � I)
�

(12)

The expression for conditional posterior distribution
of every parameter is di�cult to obtain due to the com-
plexity of the function �. In our computation, we make
the following simpli�ed disposing for approximation.

In equation (17), after taking away the operation of
sum across the whole texture image, we get

exp(��(�1x1 + �2x2 + �3x3 + �4x4)) (13)

This equation can be considered as probability distri-
bution of one parameter in fn, it has pdf similar to the
form showed in Figure 2. The real conditional posterior
distribution for this parameter is equal to the product
of probability distribution like equation (18) across all
lattice in the whole texture image.

For simplicity, we take one exponential distribution
to approximate the shape of the real conditional pos-
terior distribution for every parameter in fn. But this
exponential distribution is taken as of symmetry. The
symmetrical point p0 is taken as the central point in
terms of weight.

For example, the conditional posterior distribution
for parameter �1 is approximated by one symmetrical
distribution with one half like exponential distribution.
And the symmetrical point is taken as



p0 =

PM

i=1

PN

j=1 x
(i;j)
1 (�2x

(i;j)
2 + �3x

(i;j)
3 + �4x

(i;j)
4 )PM

i=1

PN

j=1 x
(i;j)
1 x

(i;j)
1

(14)

Based on the conditional posterior distribution we
have obtained, we can sample all parameters in fn.

4 Experiment Result

The experiments are performed using some Brodatz
textures [11]. First, we estimate the parameters for
one particular texture imagewith MCMCmethod, then
synthesis texture with the parameters. The process of
texture synthesis is the same as that sampling method
used in Markov random �eld model.

Compared with sampling process of Markov random
�eld model, the number of gray level for texture gen-
erated by this maximum entropy random �eld model
su�ers no limits. The two synthesis texture are gener-
ated with 256 gray levels. These two texture are learned
from one fur texture and one vertical line texture, and
the original pictures are showed in Figure 3 and syn-
thesis textures showed in Figure 4.

5 Conclusion and Future Work

Based on the concept of maximum entropy and 2-D �l-
ter, we propose a new model to represent the texture in
this paper. The model can be used to synthesis many
types of texture. The parameters in the �lter play an
important role in forming the texture patterns. We pro-
pose a parameter estimation method based on MCMC
approach in order to obtain the parameters in the �l-
ter. This method is much robust comparing with other
traditional approaches.

Experiments show that maximum entropy random
�eld model is capable of representing simple texture
patterns, just like what Markov random �eld model
can produce. However, it has only limited capability
for natural texture description. The solution to this
problem lies on adding more �lters on this maximum
random �eld model. The selection and estimation of
the �lter set are currently being studied.
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Figure 1: Potential function �()
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Figure 2: Typical pdf

Figure 3: The original Texture images

Figure 4: The synthesized texture images
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