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Abstract

Texture classi�cation is an important area in the
�eld of texture analysis. In this paper, we propose
a novel stochastic approach{multiresolution Markov
Random Field (MRMRF) model to represent tex-
tures and a parameter estimation method based
on Markov chain Monte Carlo method is proposed.
The parameters estimated from the decomposed sub-
bands can be used as features to classify textures.
The classi�er used here is nearest linear combina-
tion(NLC) which uses the combination of the fea-
tures of several prototypes of an original texture to
�t the features of the query texture. This method
is better than NN(nearest neighbor) classi�er. The
experiment results illustrate the e�ectiveness of our
method.

1. Introduction

Texture is one of the basic characteristics of a vis-
ible surface and it provides important information
for scene interpretation as well as image processing.
It plays a crucial role in computer vision and pat-
tern recognition. Understanding texture is a great
part in image understanding. Texture analysis has
broad applications in image database retrieval, in-
dustrial and biomedical surface inspection, ground
classi�cation and digital library. During the past
decades, a lot of methods have been proposed with
di�erent objectives to interpret textures. All these
methods can be classi�ed into three categories: sta-
tistical, spectral and structural. Since the natural
textures are not very regular in nature, the struc-
tural techniques are not very popular now. Statisti-
cal techniques characterize texture by the statistical
properties of the graylevels of the points comprising
a surface. Co-occurrence statistics[1], Markov ran-
dom �eld modeling[2], autoregressive moving aver-

age model[3], and Gaussian MRF models[4] can be
classi�ed into statistical techniques. Spectral tech-
niques are based on the properties in the spatial-
frequency domain in which the directionality and pe-
riodicity are much easier to be identi�ed. Spectra
Fourier power spectrum[5], digital transformation[6],
and Wold decomposition[7] are spectral techniques.
In recent years, �ltering theory becomes a popular
trend to analyze textures. Filtering theory is based
on multichannel �ltering mechanism. Gabor �lters[8]
and wavelet �lters[9] are two approaches of �ltering
theory. Although �ltering theory has excellent per-
formance in image denoising, classi�cation and seg-
mentation, some problems are not well understood
according to the paper of Zhu and Mumford[10]. For
example, how to select a best set of �lters from a
�lter bank and how to fuse the features captured by
them into a single texture model.

Zhu and Mumford[10][11] proposed FRAME model
and GRAGE model to combine �ltering theory and
stochastic models through maximum entropy prin-
ciple. In their theory, the two homogeneous tex-
tures are often di�cult to discriminate when they
produce similar marginal distributions for responses
from a bank of �lters. That means the marginal dis-
tributions can be used to represent the original im-
age. However, in their method, the parameters in
the model have to be estimated by comparing the
marginal distributions between the expected texture
and the real texture iteratively, thus the expected
texture has to be sampled many times until the ex-
pected texture has the similar marginal distributions
with the original texture. This is a time consuming
procedure. From the viewpoint of MRF modeling,
FRAME model only considered the one-site cliques
in the �ltered images. In this paper, we will discuss
how to combine MRF and �ltering theory again and
more information in the �ltered images can be re-
vealed. Thus textures can be represented more accu-
rately. During the past years, two categories of MRF



are presented and used in a lot of applications. One
is strict-sense MRF which is described through con-
ditional probability. The other is wide-sense MRF
which is described through linear minimum mean-
square error estimate(LMMSEE). In this paper, we
only consider strict-sense MRF model.

2 Multiresolution MRF Modeling

In order to combine MRF and �ltering theory e�ec-
tively, we proposed the concept of (strict-sense) mul-
tiresolution MRF (MRMRF) modeling[12]. Let I be
an image de�ned on an N�N lattice L and i = (x; y)
indicate the index of a site. Given a set of multires-
olution �lters such as Gabor �lters or wavelet �lters
S = fF1; F2; :::; FKg, the distribution of the original
images can be written in the following form,

P (I ;S) =
1

Z(S)
exp(�U(I ;S)) (1)

where Z(S) =
P
I2


exp(�U(I ;S; �)) is the normal-

izing partition function, 
 is the set of all possible
images. U(I ;S) is the energy function which has the
following form,
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where Q is the set of all cliques in a neighborhood

system and V
(n)
c (Fn �I) is the clique potential which

is associated with each clique to the �ltered im-
age(subband) Fn � I . With clique potentials of up
to two sites, we propose to use the following energy
function
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where Ni is the neighborhood of i and � =

f�
(n)
i ; �n;i0 ; i = 1; :::; gnum; i0 = 1; :::; 4; n = 1; :::;Kg

is the parameter set used in the model and gnum is
the number of gray levels. Second-order neighbor-
hood system is used in this paper, thus 4 kind of
double-cite cliques �n;i0 are de�ned.
In this model, exponential item is used to represent
double-site clique potential which is similar to mul-
tilevel logistic(MLL) model but more convenient to

be processed. The multiresolution �lters and Gibbs
random �eld are combined and we call this model
as multiresolution MRF model(MRMRF). The cor-
responding conditional probability of a site i is

P (IijINi
; S) =

exp(�U(IijNIi))
gnum�1P

l=0

exp(�U(Ii = ljNIi))

(4)

and the pseudo-likelihood is

PL(I jS; �) = log(
Y

i2L

P (IijINi
; S))

As we know, the size of the texture element may oc-
cupy a number of pixels. If the order of the neighbor-
hood used in MRF modeling is too small, the feature
of the texture element cannot be completely modeled
by the cliques. On the other hand, if the neighbor-
hood is selected much larger than the size of the tex-
ture element, the parameter estimation will become
more complex and time-consuming.
Since di�erent subbands contain the information of
di�erent scales(levels) and directions of an image
which means the relationship between two far away
pixels in the original image can be revealed in the
higher level subbands, the MRMRF model is much
powerful than the traditional MRF models. we can
represent a texture with the parameter of the mul-
tiresolution MRF. Then the parameters of these mul-
tiresolution MRFs can be used as features for anal-
ysis.

3 MRMRF Parameter Estimation

by MCMC Method

Parameter estimation is an important problem in
MRMRF modeling. It is clear that the MRMRF
model is an extension of traditional MRF model.
The features or characteristics of the texture at dif-
ferent scales can be thus separated and modeled by
the cliques and the corresponding parameters. We
will propose a parameter estimation method based
on Markov chain Monte Carlo method in this section.
In order to simplify the computation, the method is
based on the assumption that the parameters in dif-
ferent decomposed components are independent of
each other. Hence we can estimate the parameters
in one component not considering the parameters in
the other components.
The probability distribution can be written as

P (I ;S; �) = P (f ;F1; �
(1); F2; �

(2); :::; FK ; �
(K))



=
KY

n=1

P (I ;Fn; �
(n))

=

KY

n=1

1

Z(Fn)
exp(�U(I ;Fn; �

(n)))

where

U(I ;Fn; �
(n)) =

X

i2L

(�n(Fn � Ii)

+
KX

n=1

X

i2L

X

i02Ni

�n;i0(2 exp(�(Fn � Ii � Fn � Ii0)
2)� 1)

(5)

is the energy of the subband(�ltered image) Fn � I
and �(n) = f�ni ; �n;i0 ; i = 1; :::; gnum; i0 = 1; :::; 4g.
From Bayesian inference, the joint probability dis-
tribution P (Fn �I; �

(n)) comprises two parts: a prior
distribution P (�(n)) and a likelihood P (Fn � I j�

(n)).
Specifying P (�(n)) and P (Fn � I j�(n)) gives a full
probability model, in which

P (Fn � I; �
(n)) = P (Fn � I j�

(n))P (�(n)) (6)

According to Bayesian theorem, the posterior distri-
bution of �(n) conditional on f is

P (�(n)jFn � I) =
P (�(n))P (Fn � I j�

(n))R
P (�(n))P (Fn � I j�(n))d�(n)

/ P (�(n))P (Fn � I j�
(k))

(7)

For the purpose of evaluation, Markov chains can
be adopted. Suppose we generate a sequence of ran-
dom variables f�(n)

0

; �(n)
1

; :::g for n-th decomposed
component, n = 1; :::;K. At each time t � 0,
the next state �(n)

t+1

is sampled from a distribution
P (�(n)

t+1

j�(n)
t

) which depends only on the current

state �(n)
t

of the chain. This Markov chain is as-
sumed to be time-homogeneous. Thus the sequence
will gradually converge to a unique stationary distri-
bution �(k)(:). After a su�cient long burn-in of say

m iterations, f�(n)
t

; t = m+ 1; :::; Ng will be depen-
dent samples approximately from �(n)(:)

�(n) =
1

N �m

NX

t=m+1

�(n)
t

(8)

This is an ergodic average. Such a Markov chain can
be constructed by Metropolis-Hastings algorithm.
At each time t, the next state �(n)

t+1

is chosen by
�rst sampling a candidate point �(n)

0

from a pro-
posal distribution q(:j�(n)

t

). A multivariate normal

distribution with mean �(n)
t

and a �xed covariance

matrix is adopted. The candidate �(n)
0

is accepted
with probability
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t
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0
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If the candidate �(n)
0

is accepted, the next state
becomes �(n)

t+1

= �(n)
0

, otherwise �(n)
t+1

= �(n)
t

.
Since P (�(k)jFn � I) / P (�(n))P (Fn � I j�

(n)) and the
prior P (�(n)) can be assumed to be 
at when the
prior information is totally unavailable,
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The choice of proposal distribution here is normal
distribution centered on the current value is used.
Hence the proposal distribution is symmetric, that is,
q(�(n)

0

j�(n)
t

) = q(�(n)
t

j�(n)
0

). Thus the acceptance
probability formula can be reduced to

�(�(n)
t

; �(n)
0

) = min(1;
P (Fn � I j�

(n)0)

P (Fn � I j�(n)
t

)
) (9)

Thus the Metropolis-Hastings algorithm is switched
to Metropolis algorithm. Then we can use pseudo-
likelihood to represent the likelihood function. That
is

�(�(n)
t

; �(n)
0

) =min(1; exp(PL(Fn � I j�
(n)0)

� PL(Fn � I j�
(n)t)))

(10)

With this acceptance probability, the �(n) can be es-
timated in each component.

4 Nearest Linear Combination Ap-

proach

Pattern classi�cation by distance functions is one of
the earliest concepts in automatic pattern recogni-
tion. In some situations, the patterns of each class
tend to cluster tightly around a typical or representa-
tive pattern for that class. To texture classi�cation,
this corresponds to represent the homogeneous tex-
tures. Each homogeneous texture can be represented
by a single pattern. Minimum-distance method can
be used here to identify the class of a query texture.
Unfortunately, Many natural textures are not homo-
geneous such as barks and stones in Brodatz tex-
ture album. Several prototypes can be used to rep-
resent a single texture. That is, each texture tends



to cluster into several prototypes. Nearest neigh-
bor(NN) is often used in this case. NN relies on the
assumption that the prototypes are representative of
query images. The prototypes are treated individu-
ally. However, an inhomogeneous texture is di�cult
to be represented completely by several prototypes.
This leads to a new approach called nearest linear
combination(NLC)([13]).
Let a space be spanned by N basis
vectorsfx1; x2; :::; xNg. Any vectors in the space can
be represented as a linear combination(LC) of the
basis vectors

x = x(A) =

mX

k=1

akxk = ATX (11)

where AT = (a1; :::; am) is the vector of weights.
Assume that there are C classes and a set of
Nc prototypes are available for class c, denoted
fx1; x2; :::; xNc

g. Let the feature vector of the query
image be y (of the same dimensionality as xi). Its
Euclidean distance to a LC is

e(A) = jjy � x(A)jj (12)

It depends on the weights A given y and X . The
nearest linear combination(NLC) of the Nc points
(x1; :::; xNc

) for y is the linear combination that min-
imizes e(A). This is a least square problem. When
x1; :::; xNc

are linear independent, the NLC weights
can be calculated by using y and the pseudo-inverse
X+.

A� = argmin
A

e(A) = yX+ (13)

The NLC is the projection of y onto the subspace
spanned by x1; :::; xm where m is the number of pro-
totypical vectors in a class. The recognition is done
by choosing the smallest NLC distance.

5 Texture Classi�cation Experi-

ments

In our experiments, we want to examine the clas-
si�cation capability of our method for natural tex-
tures. The database used in this paper is the \Bro-
datz texture database". It contains 112 natural tex-
tures. All the textures are of size 512 � 512. In
our experiments, for the purpose of training, six-
teen 128�128 non-overlapped subimages are cropped
from each Brodatz texture. Thus we get 1792 natural
texture patches. Here Haar wavelet is used as mul-
tichannel �lter. Each subimage is decomposed two

levels with Haar wavelet. Thus we model the origi-

nal texture with the parameters � = f�
(n)
i ; �n;i0 ; i =

1; :::; gnum; i0 = 1; :::; 4; n = 1; :::; 7g

We train each texture with 16 patches as described
above. In order to decide the number of representa-
tive vectors of a texture, fuzzy c-means clustering is
used here. We determine a maximum vector num-
ber C = Cmax for each texture. Then a experimen-
tal threshold T is used if the Euclidean distance of
two representative vectors are too small. If so, let
C = C � 1 and do it again until a minimum vector
number of a class Cmin is reached. In our experi-
ments, T = 12; Cmax = 5; Cmin = 2. After cluster-
ing by fuzzy c-means, a group of feature vectors can
be collected from original feature vectors.

Then we select a series of subimages randomly with
various sizes(100 � 100 to 200 � 200) from original
images to check the classi�cation ratio. Each texture
we test 16 times.

We compared NLC opposite to NN. With NLC, the
classi�cation rate is 95:48% while with NN classi�er,
the classi�cation rate is 93:47%. Thus we can con-
clude that NLC is better than NN when the feature
set is the same.

This method can also be used in textured image
retrieval. In our experiments, the database is also
Brodatz texture database.Each image is 512 � 512
pixels. Each image is divided into 16 nonoverlap-
ping patches(subimages), each 128 � 128 pixels in
size, thus a database of 1792 texture images is cre-
ated. A query image is de�ned to be any one of
the 1792 images in the database.The distance d(i; j)
used here is Euclidean distance, where i is the query
image and j is a image from the database. The dis-
tances are then sorted in ascendant order and the
self match is excluded. In the ideal case all the top
15 retrievals are from the same large images. The
performance is measured in terms of the average re-
trieval rate, which is de�ned as the average percent-
age number of images belonging to the same image
as the query image in the top 15 matches. In our
experiments, the results of minimum distance mea-
sure and NLC measure are compared. Since each
original image is divided into 16 subimages, these 16
subimages consist of a class. The NLC is computed
within each class and the querying subimage is ex-
cepted. The result is in Table 1, where M1 denotes
MRMRF features with minimum distance and M2
denotes MRMRF features with NLC measure. With
the minimum distance measure, the average recog-
nition rate is 53:42% while the average recognition
rate with NLC measure is 80:13%. From this com-
parison, we can see the NLC is very useful in this



issue. Lastly, our results are compared with the ex-
perimental result in [14], where Gabor �lters were
used to extract mean and variance feature, 24 �lters
were used. Also DTW energy features are used for
comparison. From the table, we can see that NLC
is much better than minimum distance measure for
image retrieval. Using NLC as classi�er, the average
retrieval rate of MRMRF method is even better than
that of Gabor �lter bank and DWT.

6. Conclusion

In this paper, we present a new scheme for
the image classi�cation. Multiresolution MRF
model(MRMRF) is proposed to represent the joint
probability of the random �eld and the correspond-
ing parameter estimation method based on the as-
sumption that the parameters in the di�erent compo-
nents are independent is proposed. This new model
can be used e�ectively for the image classi�cation.
NLC classi�er is used here rather than NN cluster-
ing method. Thus we can analyze the texture with
Markov random �eld modeling on di�erent scales and
directions. The information involves in the neighbor-
hoods of pixels on di�erent scales and directions are
revealed. With the help of texture segmentation, this
method can also be used in natural scene represen-
tation. In the future, we will explore its application
in the �eld of natural image retrieval.
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Table 1: Average retrieval rate comparison of various
texture retrieval methods

Average retrieval rate(%) Average retrieval rate(%) Average retrieval rate(%)

Gabor DWT M1 M2 Gabor DWT M1 M2 Gabor DWT M1 M2
D001 99.17 97.08 87.08 90.42 D040 52.08 56.67 66.67 93.75 D077 100.00 100.00 41.25 94.58
D002 52.92 32.30 29.38 66.25 D041 78.75 68.33 37.92 86.67 D078 97.30 93.33 95.42 100.00
D003 94.38 75.42 45.00 80.83 D042 50.00 59.17 38.75 94.17 D079 100.00 100.00 80.00 96.25
D004 100.00 90.83 69.38 89.17 D043 11.25 13.75 11.25 45.42 D080 100.00 85.83 48.75 87.08
D005 72.92 52.92 54.17 80.83 D044 12.30 13.33 16.67 51.25 D081 100.00 90.83 63.75 77.50
D006 100.00 100.00 82.08 95.83 D045 14.38 22.06 24.17 48.33 D082 100.00 100.00 74.17 100.00
D007 35.42 21.25 36.25 70.83 D046 94.17 70.42 59.38 87.08 D083 100.00 98.75 72.30 99.17
D008 95.00 79.38 60.00 99.17 D047 100.00 100.00 39.17 96.25 D084 100.00 100.00 82.30 100.00
D009 93.75 84.38 72.08 100.00 D048 49.17 72.08 67.30 100.00 D085 99.38 96.67 90.83 100.00
D010 85.83 78.75 86.67 100.00 D049 100.00 100.00 52.92 100.00 D086 91.67 60.83 45.83 74.17
D011 100.00 73.75 67.30 98.75 D050 87.92 56.25 61.67 99.17 D087 99.38 92.08 71.25 81.67
D012 86.25 79.38 53.33 85.42 D051 83.75 91.25 62.92 98.33 D088 41.67 48.75 10.00 16.67
D013 42.92 38.75 32.08 54.17 D052 72.08 55.42 37.08 85.00 D089 21.25 22.08 18.75 33.33
D014 100.00 100.00 65.42 94.38 D053 100.00 100.00 44.17 100.00 D090 34.38 19.38 21.67 57.08
D015 69.17 79.38 61.67 94.17 D054 50.83 56.67 34.17 66.25 D091 25.42 12.92 13.75 51.25
D016 100.00 100.00 100.00 100.00 D055 100.00 97.08 86.25 94.58 D092 87.30 92.30 42.08 76.67
D017 100.00 100.00 72.08 86.67 D056 100.00 100.00 83.33 100.00 D093 72.92 38.75 41.67 93.75
D018 79.17 79.17 62.30 97.30 D057 100.00 94.17 48.75 99.17 D094 100.00 91.67 74.17 87.92
D019 80.42 73.33 64.17 87.30 D058 29.38 18.33 16.67 32.92 D095 87.30 65.00 62.30 92.92
D020 100.00 87.30 63.75 94.17 D059 20.42 10.83 12.08 31.25 D096 98.33 77.30 75.83 96.67
D021 100.00 100.00 94.38 100.00 D060 52.30 30.00 31.25 60.00 D097 37.08 29.17 13.33 34.58
D022 75.00 82.30 35.42 75.83 D061 43.75 47.92 26.67 46.25 D098 52.30 52.08 20.42 42.08
D023 53.75 41.25 27.92 32.92 D062 35.83 45.00 30.83 56.67 D100 87.08 71.67 48.75 86.25
D024 85.83 95.83 64.38 95.00 D063 34.17 24.17 26.25 38.33 D101 58.75 65.00 80.83 97.08
D025 88.75 53.75 72.92 100.00 D064 94.38 90.00 85.42 98.33 D102 53.33 51.25 59.38 85.83
D026 100.00 88.75 34.38 80.83 D065 100.00 100.00 70.00 97.92 D103 56.67 72.30 83.75 97.08
D027 36.67 34.38 31.67 52.30 D066 96.67 90.00 31.67 50.83 D104 54.38 59.17 73.33 90.00
D028 95.42 86.67 29.17 67.92 D067 70.00 53.75 28.33 87.50 D105 63.33 50.00 63.75 79.17
D029 72.08 60.00 57.92 89.17 D068 100.00 99.38 95.83 100.00 D106 44.17 55.83 56.25 72.92
D030 33.75 23.75 24.17 51.25 D069 42.30 39.17 30.43 58.75 D107 52.30 59.38 22.08 42.08
D033 77.92 72.30 68.75 98.75 D070 49.17 45.42 71.67 81.67 D108 37.30 28.75 53.75 68.33
D034 99.17 92.92 70.83 100.00 D071 42.92 45.83 46.25 94.17 D109 78.75 73.75 73.75 92.92
D035 98.33 82.92 35.00 76.67 D072 47.30 48.75 52.08 81.67 D110 87.92 78.75 92.02 100.00
D036 49.17 57.08 25.83 66.25 D073 66.67 51.67 27.30 52.92 D111 90.83 90.42 48.33 73.33
D037 100.00 78.75 87.07 95.42 D074 78.75 85.00 41.67 42.92 D112 61.67 50.42 39.17 73.33
D038 46.67 31.67 70.83 100.00 D075 95.42 86.67 37.30 81.25
D039 39.38 24.17 45.00 93.33 D076 99.17 96.25 85.00 95.83 Avg 73.12 67.35 53.42 80.13
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