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Abstract are significant aspects to be incorporated into the system de-
sign. The main parameters of interest, which vary widely for
We are investigating the design of machine vision algodifferent kinds of filter, include physical dimensions such as
rithms for real time inspection of filter components for qualwidth, height, depth, and diameter. The task requirements in
ity assurance. Filter components are rigid 3D objects witterms of speed and accuracy are demanding: production lev-
predefined geometry so that a good deal of knowledge cas stand at around 4 million filter units per year where each
be incorporated into the system design. However, while thidter — a 3D object — must be inspected at the production
objective is to reason about 3D structure, current machirige in just 1.8 seconds, and that includes setting-up time,
vision techniques only allow the acquisition of 2D object deimage acquisition, processing, and flagging out of defective
scriptions and this is normally referred to as a 3D-2D corresomponents. Typical accuracies are described in terms of
spondence problem. We have investigated geometrical teafeviation from standard values which ar@.5% of the ex-
niques in 2D and in 3D and have developed a novel methqected value for any measurement. While some parameters
to analyse rigid body transformations that have been sucan be rigorously controlled, others are more problematic
cessfully applied to machine vision calibration problems. Iisuch as thermal properties of metallic heating plates. These
this paper, we first describe a geometrical analysis of imagsates are used to bake a polystyrene compound whose final
correspondence applied to 2D rigid body transformationsonfiguration depend on the baking temperature, amount of
We then develop a novel calibration algorithm that, giverrompound dispensed, and baking time.
a 3D model of an object and a set of 3D-2D image corre- Through analysing the essence of the problem, given that
spondence points allows the calibration of all transformayur aim is to verify conformance to specifications in terms
tion parameters of interest. The calibrated parameters canfilter dimensions within stringent performance require-
then be used to verify the physical dimensions of the obments, a good deal of knowledge can be incorporated into
ject under inspection. For a comparative analysis, we alshe system. For instance, filters can be mechanically driven
develop a calibration algorithm based on epipolar geometty predefined positions in a reference coordinate frame and a
applied to the same task. Experimental results have showamera would acquire images from a known, suitable place.
that our novel algorithm performs much better than the albnce the camera has been installed, the theoretical orienta-
gorithm based on epipolar geometry and that it is well suiteflon and position of the camera in the reference coordinate
to the real time requirements of the task. frame together with the depth of each visible point on the
filter in the camera centred coordinate frame can be exactly
determined, as we have full knowledge of the 3D structure
1 Introduction of an ideal filter. Thus, a real time automatic inspection of
filter production would only require the acquisition of 2D
The research reported in this paper is concerned with an ititage data. This reduces the problem to the determination
dustrial application of 3D machine vision to quality inspecof which points on the 2D image correspond to points on the
tion. We are investigating the design of a real time, auto3D filter in the reference coordinate frame. This is called
matic vision system for inspection of filter components in & 3D-2D correspondence problem and landmarks can nor-
manufacturing line. Several types of filter are manufacture@ally be used to determine such correspondences.
by our industrial collaborator, including filters for petroland ~ Many algorithms have been proposed to solve 3D-2D
diesel engines, pollution control, and other industrial appliproblems, such as techniques based on conservation of
cations. Variations in size and shape for each kind of filtedistance [2], triangular geometry [9], [12], iterative least
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scribed in Section 4. Finally, some conclusions are drawn in
Section 5.

2 Analysis of 2D Correspondence
Vectors

X

image plane

/ ° world X )OM
z z

Figure 1: 3D-2D problem: given all information about a
scene P) in oxyz coordinate frame and an imagB’)
of this scene taken from another viewpousit how to
estimate the orientation and position of the camece &t
oxyz coordinate frame and the structural information
this scene in camera centred coordinate frafisgy’z’?
In the figure,f represents the focal length of the camera,
and(p, P’) is called a 3D-2D correspondence.

A survey of machine vision literature indicates that signifi-
cantly less research effort has been spent into the calibration
of rigid body transformation parameters given two sets of
2D correspondences in comparison with calibration given
two sets of 3D correspondences (e.g. [7], [8], [17]). Given
that 2D is a special case of 3D and the fact that we nor-
mally acquire 2D images to reason about 3D, there is scope
to further investigate the 2D case aiming at determining and
extending calibration methods and concepts from 2D to 3D.
Therefore, in this paper we concentrate on the study of ge-
ometrical properties of 2D image correspondences which
squares method [6], [10], [11], and iterative method [13]can be used to calibrate the orientation and position of the
[14], [15], [16]. However, such algorithms do not explicitly camera and on the use of such properties to determine the
use distance and angular information as constraints to cagtructural parameters of 3D objects. The starting point for
brate the orientation and position parameters of the camesar analysis is that we mainly consider the relationships be-
even though it seems that such information will increase thgveen 2D correspondences that have been synthesised into a
performance of the algorithms. Second, these algorithms agingle coordinate frame. The general assumptions and con-
normally based on iterative methods which have a disadvastraints of our analysis method are given as follows:

tage of depending on the initial value of unknowns and that
the best solution cannot be guaranteed to be found.

of

1. all transformations must be rigid body transformations;

We have analysed geometrical properties of correspon-,.
dence vectors synthesised into a single coordinate frame.
These are described in Section 2. Based on this geometri-
cal analysis, we designed the system layout with the geom-3.
etry as depicted in Figure 1. We align the optical axis of
the camera so that it is parallel to thexis of the reference
coordinate frame and coincides with the focal point of the 4.
camera in thexy plane of reference. As a result, the image
plane will be parallel to th&y plane of the reference. We
then developed a novel algorithm called Simplified Geomet-
rical Algorithm (SGA) to estimate the parameters of interest
including the orientatiorR and positiont of the camera,
and the filter structural dat{ describing the depth of each
visible point in camera centred coordinate frame. The SG§
algorithm provides the closed form solutions to all calibrate
parameters making full use of distance and angle informa-
tion. For a comparative study of the performance of the

all correspondences must undergo the same rigid body
transformation;

all correspondences must be synthesised into a single
coordinate frame;

because the field of view cannot exceed 180 degrees,
the rotation angl® of the rigid body transformation
must be defined a&: < § < «. As a result, the rotation
anglef can be uniquely determined by its cosine value.

Generally speaking, the relationship between a ppint
described in one coordinate frame and its corresponding
ointp’ described in another coordinate frame after a rigid
ody transformation can be represented as follows:

P =R(p—t) (1)

SGA algorithm, we also developed an algorithm based onhereR. represents the rigid body rotation matrix (corre-
the epipolar geometry called Simplified Epipolar Geometrgponding to an orthonormal matrix with determinant equal
Algorithm (SEGA). A comparative analysis is presented ino 1), t represents the translation vector of the rigid body

Section 4.

transformation andp, p’) is called a correspondence.

The rest of this paper is organised as follows. The anal- The geometrical considerations and formalisation of our
ysis of 2D correspondence vectors is described in Section@ethod are described as follows. In 2D, synthesise a set
the novel SGA algorithm to estimate the orientation and pasf feature points and their corresponden¢ps, p;) (¢ =

sition parameters of the camera and structural data of the2,

---,n) into a single coordinate frame. It is verified

filter in the camera centred coordinate frame is described that the perpendicular bisectors of correspondence vectors
Section 3, and the validation of the SGA algorithm is deCV; = p; — pj (¢ = 1,2,---,n) all intercept at a fixed
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(P—c)"R(p—c¢)
— P-9tP-o
— = cosb 3

|

Proof of Necessity:If there is another point’ satisfy-
: X ing Equations 2 and 3, then we hage— p’) T (¢ —¢') = 0.
(<)) 3 Becausép, p’) is an arbitraryCV, thereforec =¢’. N
p Because we are interested in analysing geometrical prop-
‘ erties from sets of image correspondengssp;), we must
Xo look at the problem from such perspective. From image cor-
A respondence, the pointcan be determined which is then

of ./ X used to calibrate the rotation angle®f the transformation,
o the rotation matrixR, and the translation vectar Thus,
Figure 2: After the rigid body transformation, the points given two non-parallel correspondence vect@¥; and
p andp’ lie on the circle centred at the poiatwith the CV,, their perpendicular bisectors will intersept at the point
including angle between vectops— ¢ andp’ — ¢ equal ¢ which can be estimated by:

to the rotation angle of the transformation. )
( _ )T -1 P1TP1*P1TP/1
. P1—P1 T2, 4)
¢ —_ )T T Ty
. . . - (P2 — P3) PiP2—PyTP)
pointc. Plotting the translation vectarat the origin of the 2
coorqlmate frame, itis venﬂegl that |t§ perpendlcular.blsect.qf the two correspondence vectors are parallel then the two
also intercepts at the same fixed point and that the '”CIUd'Qﬂarpendicular bisectors of'V; and CV, will coincide

angle between the lines passing through any correspondenggy the point is undetermined. Once the critical point is

(pi,p;) and the fixed point is equal to the rotation angle known, the rotation anglé can be estimated by:
of the transformation. From appearance, it seems that the
P—o)T® -¢)

direction of rotation from vectop; to vectorp; around this

fixed point is opposite to that of the rigid body transforma- cos ) = P—c)T(p—c) ®)
tion. The above properties as depicted in Figure 2 are for-
malising as follows: As a result, the rotation matriR. of the transformation is

uniquely determined by:
Property 1 There is one and only one poiatin 2D which
is uniquely determined by the rigid body transformation R— ( cost)  sind ) ©6)
equidistant to any corresponden¢p, p’) subject to the —sinf cosf

same rigid body transformation and the including angle beI_:inall the translation vector can be represented as a corre-
tween vectorp — ¢ andp’ — ¢ is equal to the rotation angle Y P

9 of the transformation. spondenc€Vy = t — 0, which can be estimated by:
_ T
Proof of Sufficiency: If the transformation R, t) is t=(I-R)e @

known, then the critical point can be constructed as: The above analysis shows that, from image correspondences

c=(I-RY) (pi, pi) we have developed a set of explicit expressions
making full use of feature vectors and angular information.
which is equivalent to: These equations are useful to the estimation of rigid body
transformation parameters (e.§, R, t,) and to the design
c=t+RTc and analysis of a setup for the real time system for automatic

. . . . . inspection of filter components under investigation.
wherel is a 2D identity matrix, the superscriit means P P 9

transpose. Thus, we have:

3 Description of the Algorithm

Ip'—cll = [R(p—t)—cl|
= |lp—-t—R'||=|lp—c|ll (2) In this Section we describe an algorithm that has been de-
veloped taking in consideration the special camera setup as
and highlighted in Section 1. In the setup, a reference coordinate
p—-c)T (P —c) p—-c)TRP-t)—rc) frameoxyz describes the ideal positidip) of the filter at
P-c)T(p—c) (P-—c)T(p—c) a fixed place in the production line. From this setup, it is
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known that the camera can only move in ttyeplane of the and

reference coordinate framexyz and rotate around the op- (PTP1— P PL)/2
tic_al axi;h = (0,0, 1.).T. We can desqribe the camera’s 3D (Y ps — potph)/2
orientation and positiofR, t) in relation to the reference b = .

coordinate framexyz as: T : ‘p
(PaPn — Pn Pn)/2

cosf sind 0 t 2. Using Equation 5, estimate a set of the cosiagsf
R=| —sinf cosf 0 |, t=1| ¢ (8) rotation angles corresponding ¢ps, p}). In order to
0 0 1 0 eliminate the effects of noise, the finally calibrated ro-
A 2D image or picturQP’) is acquired through the cam- tation angl@ is estimated by a band pass filter as:
era for each filter under inspection. Generally, the relation- R )
ship between the poim = (x,y,2)T in the oxyz coor- 8 = arccos{average of band pass filtered a;}.
dinate frame and the image poiRY = (X', Y’) can be
represented as: 3. The 2D rotation matri@ can be estimated by Equa-
tion 6.
o P
() =Re-v © N |
1 4. The 2D translation vectar of the camera can be esti-

' mated by Equation 7.

where 1; represent the homogeneous coordinate of

image pointP’, p, R, andt are as defined in Equation 1, >
andz’ represents the depth of poimtin camera centred co-
ordinate frame. We assume a unit focal length of the cam-
era(f = 1) for convenience of computation. Equation 9 is
equivalent to:

The deptlz; of each pointin camera centred coordinate
frame can be estimated by:

2; = (R1(pi — t)/X{ + Ra(ps — $)/Y))/2 (11)

whereR; andR- are the row vectors of rotation ma-
trix R.
zP’ = R(( ‘; ) —t) (10)

For the purpose of comparative analysis, we also
whereR is a 2D rotation matrix and is a 2D translation deve|0ped an a|gorithm based on the epipo|ar ge-

vector. Obviously, Equation 10 represents a 2D rigid bodgmetry for the adopted special camera setup. This

transformation where the 2D corresponderipep’) =  algorithm is called Simplified Epipolar Geometry Al-

(( “ ) ,zP’). Once a number of 3D-2D correspondence§0rithm (SEGA). First, from [4], [3], it is known that
Y the essential matriE can be estimated bE = TR

are known (through landmark tracking, for instance) their 0 0 ¢t

counterpart 2D correspondences are uniquely determingghere T = 0 0 —t, |. Therefore,E =TR

Thus, our aim here is to estimate the transformation parame- —t, L 0

ters and the 3D structure of the filter given a numbéusu- 0 0 ¢t cosf sinf 0

ally, » > 3) of 3D-2D correspondences. Making full use— 0 —t, _sinf cosd 0

of the geometrical properties of 2D image correspondence —t, t. O 0 0o 1

(pi, p}) as described in Section 2, we propose a Simplified 0 0 ¢

Geometrical Algorithm (SGA) to estimate the parameters 0 0 —?th

of interest rotation angle, rotation matrix, translation vector,
and depth of each feature poiftt, R, t, Z;), where the hat Th
means estimated. The steps in the algorithm are described

as follows. e=(ATA) 1ATH
1. Estimate the point as:

—tycosf —f,sinf —t,sinf+t,cosd 0
us,e = (ey, s, €3), can be estimated by:

Iy X{Zl YYZl

e=(ATA)ATD zy Xjz Yizm
h whereA = ) )
where : :
(P1— pil): xn Xlzn Yz,
A — (p2 N p2) andb = (_yl7 Y2, _yn)T
: Based on the above definitions, the steps in the SEGA
(Pn —PL)* algorithm are described as follows:
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1. The rotation anglé can be estimated by: 4 Experimental Results

§ = arccos cos 6 Both SGA and SEGA algorithms were implemented as fol-
lows. From a 3D image database, we selected 30 points
where pi = (xi,y1,20)T (i = 1,2,---,30) on a 3D object de-
. . scribed in a reference coordinate frame. These points were
( 51{19 ) _ ( €3 €2 ) ( €1 ) subject to controlled rotations of 20, 30, 40, and 50 de-
cos —€2 —€3 1 grees around a rotation axis= (0,0, 1)T with a constant

translation vector = (3,4,0)7T yielding their correspon-
dence pointp; = (x},y},z;)* in camera centred coordi-
nate frame. Finally, correspondence points were projected
on the image plane’ = 1 assuming a focal lengtlfi of

. the camera equal to 1. We thus, have one set of 3D ob-
3. The 2D translation vectar = (t,,t,)" up to a scale ject points in the reference coordinate frame and their cor-

2. The 2D rotation matrif can be estimated using Equa-
tion 6.

factor can be estimated by: responding 2D perspective image poifits = (X}, YT
(i =1,2,---,30) on the image plane. These are the control
i =RT ( —€s3 ) sets of points that serve as reference for error estimation.
€2 In order to simulate real world noise contaminated data,

Gaussian random noise was then added to the coordinates
4. Use the method below to estimate sets of scale factd®§ object points and their image points and used the pro-

B andB, ;: posed SGA and SEGA algorithms to estimate the orienta-
tion parameter represented as the 3D rotation matrithe
x; — z;RTP; position parameter represented as the 3D translation vector
Bxi= n t and the structural data represented as dépthWe de-
* fined the relative calibration error of 3D rotation matii
A aser = ||R — RJ|/||R]], the relative calibration error of
Byi= yi —zRP; 3D translation vector as; = ||t — t||/||t||, and the rela-
' ty tive calibration error of the structure as = (Z; — z})/|zi|.

CExperimental results are summarised in Tables 1 and 2.

In order to eliminate the effects of noise, the scale fac- )
tor 3 can be estimated as: An overall analysis of the tables reveals that SGA algo-
rithm is superior both in accuracy and performance com-
Med(B, ;) + Med(8,.,) pared with the SEGA algorithm. The main reason is that the
g = B SEGA algorithm does not take into consideration the rigid
constraints of distance between feature points and does not
whereM ed() means the median value of a series. ~ Use angular information. Experiments have shown that the
SEGA algorithm is not only sensitive to noise, but also sen-
5. The finally calibrated translation vectbiis estimated Sitive to rounding errors. Unless accurate enough data can
as: be obtained, satisfactory performance of the algorithm can-
A . not be guaranteed.
t =gt

On the other hand, the SGA algorithm has still room for
) ] _ further performance improvements when compared with the
6. The depth of each poir; can be estimated using SEGA method, as the latter makes full use of all points in-
Equation 11. Because thefilter is in front of the camergormation while the SGA algorithm uses only partial points
the depth of each point should be positive. Therefore, @formation, such as those that are far from the fixed paint
sign check is required on the final calibrated translatiofp s by selectively using fewer feature points, it is possible
vectort and on the depth; of each point on the filter 4 yastly reduce the computation time of the algorithm with-

as follows: out loss of accuracy and this is critical for real time appli-
R R cations. The tables also show that the accuracy of the algo-
if S2F | sign(z}) < 0, thent = —, andz} = rithms tends to decrease when data are corrupted by heavier

- noise. This is not a surprising result and, relatively, while

1 ifz>0 andk is an the accuracy of the SGA algorithm can still be considered

—1 otherwise satisfactory, the accuracy of the SEGA algorithm decreases
application dependent integer (normakltyz> 3). more rapidly.

wheresign(z) =
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Rotation angle(deg 20 Rotation angle(deg 20
Calibration eRr et €. time Calibration eR et €. time
methods (%) | (%) | (%) (s) methods (%) (%) (%) (s)
SGA 2.41| 9.74 | 0.93| 0.005 SGA 8.17 | 33.11| -12.35| 0.01
SEGA 2.33| 10.33| 1.51| 0.03 SEGA 9.29 | 34.72| 9.32 0.03
Rotation angle(deg 30 Rotation angle(deg 30
Calibration en et €y time Calibration en et €y time
methods (%) | (%) | (%) (s) methods (%) (%) (%) (s)
SGA 1.86| 7.54 | -1.79| 0.01 SGA 595 | 24.12f -05 | 0.01
SEGA 294 12.79|-1.98| 0.04 SEGA 11.25| 41.96| -3.01| 0.03
Rotation angle(deg 40 Rotation angle(deg 40
Calibration eRr et € time Calibration eR et € time
methods (%) | (%) | (%) (s) methods (%) | (%) (%) (s)
SGA 1.46| 5.96 | 6.61 | 0.005 SGA 457 | 18.61 | -98.84 | 0.005
SEGA 3.64| 15.49| -0.25| 0.03 SEGA 12.91| 43.39| 103.9 | 0.04
Rotation angle(deg 50 Rotation angle(deg 50
Calibration eR et € time Calibration eR et € time
methods () | (%) | (%) (s) methods (%) | (%) (%) (s)
SGA 1.11| 4.60 | 0.71| 0.005 SGA 3.51 | 14.45| -32.30 | 0.005
SEGA 4.32| 18.08| 0.73| 0.03 SEGA 13.97 | 54.63 | -48.36 | 0.03

Table 1. Relative average calibration errors and calibratiofable 2: Relative average calibration errors and calibration
time for data corrupted by Gaussian noise with mean zetone for data corrupted by Gaussian noise with mean zero
and deviation 0.03125.

5 Conclusions

A special system setup for a real time automatic inspection
of filter components has been designed based on the analysis

and deviation 0.0625.
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