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Abstract

A non-intrusive real-time program detects the face and face
features of a moving workstation user at a rate of between 10
and 30 Hertz. Based on the face pose, it determines where
on the display the subject is looking. Button selection can be
done by opening the mouth. The long term goal is to provide
a system for controlling a computer using head movements
and gaze direction. A skin color model is used along with
geometric knowledge about the face and weak assumptions
about the lighting. Good results are reported with various
subjects and conditions, including facial hair, 3D motion,
and use of eyeglasses.

Keywords: HCI, face tracking, face recognition, menu
selection

1 Introduction

Recently, there has been a great deal of interest and progress
in the analysis of faces. Potential applications are many, in-
cluding recognition [14, 15, 13], gesture recognition [2, 16],
face-spotting in images [11, 10, 6, 17], and gaze detection
and HCI [9, 1].

The work described here is directed toward a general ca-
pability to detect and track a human face as it moves in a
3D workspace. Having achieved this capability, it can then
be used to enable others. For example, knowing the approx-
imate 3D head pose allows normalization for face recogni-
tion or for reduction of database search in the eigenface ap-
proaches to recognition [14, 13]. Or, 3D pose can be used
directly for HCI or for evaluation of how humans explore
computer displays or virtual environments.

At the higher level, ours is a programmed feature-based
approach. A set of sample faces was studied to pro-
duce a skin color model that is used within a connected-
components algorithm to extract a region that is likely to
be a face. Various heuristics are used to eliminate false re-
gions and to frame a real face; finally, additional heuristics
use knowledge of faces and lighting to locate the eyes, eye-
brows and nose. Location of these features determines gaze

direction, and the user can move the screen pointer using
just head movements and gaze direction. Button selection
can be done by opening the mouth while the user is not
moving. Section 2 describes the method for detecting the
face features in real time, and location of the eyes, eyebrows
and nose. Section 3 describes the overall architecture of the
real-time face tracking program and reports results which
show that the algorithm performs well with moderate con-
trol of the environment. Section 4 describes gaze direction
determination. Section 5 describes one possible application
of the system—menu selection using head orientation and
gaze direction.

2 Feature Location

Our feature location algorithm consists of two main parts,
described in the following subsections.

Original image Skin color class. Face region bound.

(a) Isolated face region in a sample image

Original Best threshold. Nose line Feature points

(b) Eyes, eyebrows and nose detection

Figure 1: Face and eyes/eyebrows/nose location



2.1 Face Detection

A skin color model is used within a connected components
algorithm to extract a region that is likely to be a face. The
input images are color images of red (R), green (G) and blue
(B) components. The skin color model was derived from
the 2-D plot ofRnorm = R

R+G+B
vs. Gnorm = G

R+G+B
.

The detection of face region boundaries in an input image
is depicted in Figure 1 (a). Each pixel in the original im-
age is classified according to the skin color model into skin
and background pixels. The biggest connected component
of class skin is assumed to be a face. The subimage de-
termined by the bounding box of the face object is used in
further processing.

2.2 Eyes, Eyebrows and Nose Location

Finding the eyes, eyebrows and nose is based on the knowl-
edge of the face geometry (Figure 1 (b)). To find the eye
blobs, gradual thresholding of smoothed red component in-
tensity is done. For each thresholded image, the connected
components algorithm is run to find dark blobs. Each two
blobs that are candidates for the eyes are matched to find
the nose. To find the eyebrows and nose, the image of the
red component intensity thresholded at average intensity is
used. The position of each eye is verified with existence of
the top of the eyebrow, that is assumed to be just above the
eye pupils. It is assumed that most of the lighting on the
face is from above, and that the nose line is normal to the
line between the eye pupils. The point where the nose line
hits the below-threshold area is considered as the tip of the
nose. Each match is evaluated based on additional heuris-
tics, and the match with the highest score is selected as the
eyes-nose match.

Figure 2 shows examples of feature detection for various
pan, tilt and roll angle rotations, some of which are extreme.
The program imposes a limitation of up to 45 degrees of roll
angle. The eye features are lost if the head is panned com-
pletely to the left or right. As roll and pan angles increase,
so does the error in detecting the tip of the nose.

3 Feature Tracking

The input to the base program is a live video stream from
the eye-camera attached at the top of the workstation mon-
itor, and the output is the list of eyes-eyebrows-nose coor-
dinates. Frames are processed in sequence. To take advan-
tage of movement history, we use a Kalman filter to estimate
motion vectors of tracked feature points and future position
of tracked feature points [7]. The predicted coordinates are
used in two ways: (i) to verify the position of newly found
features and (ii) if tracked features are lost to predict their lo-
cation and thus smooth out tracking and avoid losing tracked
features.

Figure 2: Results of eyes-nose detection for various roll, pan
and tilt angles. The white rectangle shows face boundaries,
and white dots show the locations of eyes, eyebrows and tip
of the nose.

The system state diagram is depicted in Figure 3. Track-
ing starts in stateNOFD (no face detected). Once the
face object is located (stateFD FIRST ) in the input video
stream, feature points are tracked using the approach de-
scribed in Section 2.2 (stateFD TRACK). It is first attempted
to find tracked features in the location of the previous frame.
If that does not succeed, we will search for the new face
position. We thus save time by not running the face detec-
tion algorithm which is the most time-consuming segment.
Since the subject’s motion is typically smooth, once we lock
the face region, tracked features can be located in the same
face bounding box for a number of video frames.

If tracked features cannot be found, prediction based
on the Kalman filter is used to fill in the gap (state
FD PREDICT). Prediction is done for a limited number of
frames. If tracked features are found while in the predic-
tion state, we switch to the recovering stateFD RECOVER
in which we only take measurements from the environment
and make no prediction. The system stays in the recover
state as long as it was in the prediction state. After the re-
covery period, if tracked features are found, we switch to
the tracking state. If tracked features are not found while in
the prediction or recover state, we start the face finding al-
gorithm again (stateFD NEWPOS), since the assumption is
that the state of the environment changed too much during
the prediction period. If the face is not found, we switch
to the initial state, while if the face is found, we switch to
the intermediate continuation stateFD CONT. In that state,
we attempt to find tracked features in the new location. If
the features are found, we switch to the recover state. If
the features are not found, we switch to the no match state
FD NOMATCH. In this state, we have a face object located in
the image, however, face features are not found.

We estimate the motion of six variables (X and Y coordi-
nates of both eyes and nose). In the Kalman filter equations,
using previous and current values of the variables, we ma-
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Figure 3: Tracking System State Diagram
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Figure 4: Comparison of X and Y coordinate tracking without (top) and with (bottom) use of Kalman filter for smoothing
and prediction.



nipulate2�2matrices, and matrix operations like inversion
are not time consuming. Time update (“predict”) equations
for the projected state of tracked pointbx�k+1 and error co-
variance matrixP�

k+1
are:

bx�k+1 = Akbxk =
�
1 0
0 �t

�� bxk
�bxk=�t

�
P�
k+1

= AkPkAT

k + Qk

wherebxk is measurement at timek, and�bxk = bxk � bxk�1.
In our case,bxk is the X or Y coordinate of the tracked point.

For�t = 1, we get:

bx�
k+1 =

� bxk
�bxk

�
P�
k+1

= Pk + Qk

Measurement update equations for Kalman gainKk, up-
date of estimate with measurementzk and update of error
covariance matrix are [7]:

Kk = P�
k
(P�
k
+ Rk)

�1

bxk = bx�k + Kk(zk �Hkbx�k )
Pk = (I � Kk)P�k

where we setHk = I , and determine measurement error
covariance matrixRk and process noiseQk empirically.

Figure 4 shows the results of feature tracking on a sam-
ple movie file: X and Y coordinates of eyes and nose points
in time are plotted. We compare the results of tracking with-
out smoothing and with smoothing and prediction based on
the Kalman filter. As can be seen, peaks in the case of no
smoothing disappear when smoothing is applied.

Theexecution timeof the program is such that real-time
tracking rates are achieved. An image size of320� 240 al-
lows the user to move freely in front of the camera and to sit
far from the camera (and display). In the current set-up, if
the subject sits about50cm away from the camera/display,
the subject’s face is about64� 64 pixels, which allows rea-
sonable matching results. For the above image size, we can
achieve a frame rate of 10–30 Hz on a SGI Indy 2 worksta-
tion.

Table 1 shows the execution times for six sample runs of
two subjects. Three different motion patterns were tested:
no significant motion, smooth motion and sudden movement
(subject moving extremely fast). All measurements were
done for 1000 frames of video on an SGI Indy 2 workstation
with input image size320� 240 pixels. The first row shows
total number of matches, and the second row shows num-
ber of frames spent in the tracking state. The execution time
of the face detection algorithm (rowFD NEWPOS) is 80–90
msec, while the time needed to locate tracked features in
the face (rowFD TRACKor FD CONT) is 10–30 msec. The
overhead induced by grabbing and displaying the image is
not significant, and overall frame rate that can be achieved

No Smooth Sudden
Motion Motion Moves

R1 R2 R3 R4 R5 R6

Match 999 1000 998 999 958 799
FD TRACK 992 998 941 924 623 431

Average Execution Times in milliseconds

FD TRACK 14 12 29 21 54 96
FD NEWPOS 94 125 89 90 90 86
FD CONT 24 16 37 15 60 53
Analysis 15 12 37 29 111 175
Grab 12 15 5 8 11 10
Display 6 5 7 5 6 5
Total 34 33 49 42 129 191

Frame Rates in Hz

Analysis 69 81 27 35 9 6
Overall 30 30 20 24 8 5

Table 1: Execution times for six runs (two subjects). Pro-
gram has been run for 1000 frames of video, on an SGI Indy
2 workstation with input image size320� 240.

for smooth motion is 20–30 Hz. In case of sudden move-
ments, the subject’s face position changes in every frame,
thus the face detection algorithm dominates the execution
times, thus the frame rate achieved is low. If we would use
smaller images, frame rate would be higher; however, that
would constrain the subject’s movements significantly, if we
are to track eyes and nose accurately.

Similar execution times were achieved on a 200 MHz
Pentium PC with Matrox video board, running Windows NT
and using Vision SDK as the interface for the camera. In this
case, the major bottleneck was the Vision SDK interface,
while the processing itself took the same time as on the SGI
workstation. Thus, the maximum frame rate was 10 Hz.

The tracking program has been tested on numerous occa-
sions, including several open-house sessions. Both light and
dark subjects were tracked with good results. When mea-
sured formally using recorded movies, subject’s face and
face features were successfully tracked in the video stream
for 99% of the frames. We did, however, have some diffi-
culty with system performance in another room in another
state.

The accuracy of the feature point detectionhas been
measured as the Euclidean distance between program-
detected and hand-labeled coordinates. Table 2 shows the
accuracy measured on 3 movies (two light and one dark sub-
jects, total length of 835 frames). The program detection
was typically 1–4 pixels away from real locations. Location
of eyes was 1–3 pixels away, while location of nose was
3–4 pixels away from hand-labeled location. These results
were obtained when outlier matches were removed from the
statistics. Errors are slightly higher when smoothing is ap-



No smoothing Apply smoothing
Eye 1 Eye 2 Nose Eye 1 Eye 2 Nose

S1 1.42 1.44 3.42 2.23 2.29 4.09
S2 1.16 2.92 2.93 1.35 3.04 3.27
S3 1.21 1.21 3.52 1.58 1.53 3.87

Table 2: Accuracy of the tracked feature location. Euclidean
distance for eyes and nose in pixels between hand-labeled
eyes and nose locations and computed locations.

plied. This is due to erroneous prediction of feature location
in case of subject’s sudden movements. However, the num-
ber of outlier matches is lower if smoothing applied. This
ensures smooth changes of feature coordinates in time, what
is important for gaze direction and menu selection, as will
be discussed in Sections 4 and 5.

4 Gaze direction determination

Once the coordinates of 3 points on the face are known,
we can determine the subject’s gaze direction. Currently,
the program tracks only the user’s head, unlike systems that
track user’s eye movements [5, 8].

The use of the P3P solution [4, 9] for 3D head pose based
on the image features and a stored 3D triangle formed by
the current user’s features requires some knowledge about
the subject and camera calibration. Our goal is to avoid the
need to use specific details about the camera and the subject.
One intuitive solution is to determine left-right motion by
measuring distance between eyes and nose in the horizontal
direction. This is easy to achieve and provides accurate re-
sults. However, applying similar logic to up-down motion
does not produce good results, since eyes-nose relations are
similar for a face looking up and down.

eye

eye

nose

eye

eye

nose

face boundaries

Figure 5: Relations between eyes and nose used as input to
neural network to determine gaze direction. Dashed lines
represent the relations we use as NN input.

To avoid this, we use an artificial neural network [12] to

estimate the gaze direction. The input to the network are
eyes and nose coordinates and their relations, and the output
is normalized screen coordinates where the subject is look-
ing. Figure 5 depicts the eyes-nose relations that we use
as input to the network. The relation we use (depicted in
dashed lines) are distance between eyes, distance between
eyes and nose, and distance of eyes and nose from face re-
gion boundaries. Training samples were obtained by having
users look at buttons in an8 � 8 grid on the workstation
monitor, as their pictures were captured. Then, the neural
network was trained using the QuickProp program [3].

The results using only the neural network based mapping
were not satisfactory. The main reason is that no movement
history has been used, and thus, for small changes in input,
mapped screen coordinate changes could be quite signifi-
cant. Thus, we use a combined approach that takes advan-
tage of smooth subject motion. After an initial estimate of
screen coordinates using the neural network, we scale the
subject’s movements in the image into display cursor move-
ments. We can achieve smooth movements of the cursor as
long as the subject’s head is moving smoothly. The logic is
similar to that used for an ordinary mouse. In the long run,
this approach enables us to adapt to individual users needs,
where each user would decide how much he or she wants to
move the head to move the cursor.

The results of gaze tracking for a4� 4 grid are depicted
in Figure 6. The subject looks in spiral moves from the up-
per left corner to the lower left corner. As can be seen in
Figure 6 (a), the X and Y coordinates of tracked points are
smooth in time. The graphs in Figure 6 (b,c,d) show X and
Y display coordinates normalized to values between 0.0 and
1.0. Dashed lines are display coordinates obtained by map-
ping. They are normalized to grid coordinates, displayed
in a solid line. Using neural network based mapping gives
very unstable screen coordinates (Figure 6 (b)). On the other
hand, if we use movement scaling, we can achieve smooth
movements of screen coordinates (Figure 6 (c)).

The results of gaze tracking for an8� 8 grid are shown
in Figure 6 (d). In this sample movie, the subject looked
in spiral moves from upper left corner to upper right corner.
The mapping was based on movement scaling. As can be
seen, it was possible to move the cursor in smooth move-
ments through the desired path.

Figure 7 shows the GUI of the tracking program. In the
upper left corner is the subject’s image, and on the right is a
grid where the program indicates gaze direction. The smil-
ing face indicates where the program thinks the subject is
looking, in this case towards row 2 column 2.

5 Application to Button Selection

In this Section, we describe one possible application of our
gaze tracking program. The application is simple button se-
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(b) Gaze tracking using neural network based mapping
only.
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(c) Gaze tracking using scaling of movements in picture to
display movements.
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(d) Gaze tracking on an8� 8 grid.

Figure 6: Results of gaze tracking on a sample movie using
neural network only and using scaling of movements in the
picture to display movements.

Figure 7: Snapshot of the face tracking program GUI: the
smiling face shows in which area on the screen the subject
is looking.

lection. Buttons are arranged in anN�M grid, and the sub-
ject’s task is to select a button using head movements, gaze
direction and face expression. We used an “open mouth”
expression as the selection signal. The reason we use mouth
expression instead of, say, eye blinking, is that mouth move-
ments are done voluntarily. Eye blinking is not always done
consciously, and we blink frequently to moisten our eyes.
Thus, that is not the best way to control the computer.

Neutral Smiling Open Smile Open Mouth

Original images

Thresholded images

Figure 8: Sample mouth expressions.

To determine whether the mouth is opened or not, we
look for a big, dark ellipsoidal blob just below the nose.
The best threshold image from Figure 1 (b) is used to find
the mouth. Figure 8 shows examples of blobs for several
face expressions: neutral, smiling (with mouth closed), open



smiling (with mouth opened), and open mouth. For these
four basic expressions, it can be clearly seen that the open
mouth expression is distinct from the other three because of
the dark blob.

The selection is done only when the subject is still for
5 or more frames. “Being still” is defined by the difference
between the previous and current position of feature points
being not more than 12 pixels. When a still state is discov-
ered, we check for the state of the mouth. When the subject
is moving, we do not check for the mouth state.

6 Conclusion

Ten years ago, Ohmuraet al. [9] implemented a 10 Hz sys-
tem which tracked 3 blue cosmetic spots on the face. Later,
Ballard [1] was able to detect 3 facial points using only in-
tensity imagery and no cosmetics; however, the lighting was
harsh and the cycle time slow. Regarding the use of head-
mouse, current systems are intrusive to the user: they either
require special devices (infrared sensors) [5] or use head-
mounted devices. The algorithm presented here meets its
major requirement of real-time operation in a friendly envi-
ronment, although implemented on a lightly loaded worksta-
tion. Implementation on a DSP should provide an inexpen-
sive alternative for future applications. The standard SGI
or PC eye-camera is used and the user is free to move in
the workspace. Correct detections are made in most frames
with modest environmental control, even for subjects with
eye glasses. The algorithm has been tested on diverse sub-
jects unseen in training with good results similar to those
documented in the tables. Feature detection accuracy is ad-
equate for choosing from typical displays of icons.

Our major interest is to explore protocols using image
sequences to enhance communication between man and ma-
chine. We believe that the current performance is sufficient
to support real applications using image sequences, which
contain much more information about what the user is do-
ing. Perhaps a useful interface based on head pose and ges-
tures will soon be available for computer users, including
the physically challenged.
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