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Abstract

This paper presents a system for the recognition of sign lan-
guage based on a theory of shape representation using size
functions proposed by P. Frosini [5]. Our system consists of
three modules: feature extraction, sign representation and
sign recognition. The first performs an edge detection op-
eration, the second uses size functions and inertia moments
to represent hand signs, and the last uses a neural network
to recognize hand gestures. Sign representation is an im-
portant step which we will deal with. Unlike previous work
[15, 16], a new approach to the representation of hand ges-
tures is proposed, based on size functions. Each sign is
represented by means of a feature vector computed from a
new pair of moment-based size functions. The work reported
here indicates that moment-based size functions can be ef-
fectively used for the recognition of sign language even in
the presence of shape changes due to differences in hands,
position, style of signing, and viewpoint.

1 Introduction

Gesture (or sign language) is widely used in the deaf com-
munity. In the foreseeable future, gesture inputs will be
widely applied for human-computer interface. R. Watson
[19] presented a review of the most recent work related
to hand gesture interface techniques: the glove-based tech-
niques, vision-based techniques and the analysis of drawing
gestures. We are interested in the vision-based technique,
which is a natural way of constructing a human-computer
interface.

Sign language consists of static and dynamic hand ges-
tures. Static gestures are characterized by hand posture as
determined by a particular finger-thumb-palm configuration,
number of fingers, finger orientation and position, and fi-
nally palm orientation; dynamic ones characterized by hand
movements. Study of this subject has a number of potential
applications in machine vision and multimedia technology
[4]. We are interested in posture recognition, especially the

sign language alphabet. Signs may be different when made
by different people, or even by the same person at differ-
ent times. Changes in the apparent shape of signs may be
due to difference in hands, style of signing, viewpoint, and
the image acquisition system. Figure 1 illustrates images of
25 signs in the International Alphabet Sign Language (ISL)
given to us by C. Uras and used in the paper.

”A” ”B” ”C” ”D” ”E” ”F” ”G” ”H” ”I”

”J” ”K” ”L” ”M” ”N” ”O” ”P” ”Q” ”R”

”S” ”T” ”U” ”V” ”W” ”X” ”Y”

Figure 1:Grey level images of the alphabet of the Interna-
tional Sign Language from “A” to “Y” given to us by C.
Uras. The “Z” sign cannot be performed statically and was
not considered in the current work.

In this paper, we are interested first in studying the prop-
erties of existing methods for 2D shape representation and
recognition, proposed in previous work; we concentrate on
possible Pattern Recognition techniques that could be used
to solve the problem of posture recognition. We show that
generally, these techniques are unlikely to be appropriate for
sign language. Then we propose the use of a new object
representation method calledsize functionsfor understand-
ing the ISL alphabet. First, size functions that capture the
shape from the apparent outline of the various signs are pre-
sented. Representation of signs can be achieved simply by
using a pair of size functions based on each sign’s principal
axis of inertia, rather than the families used in previous work
done by C. Uras and A. Verri [15, 16]. Then, a training set
of feature vectors computed from the proposed pair of size
functions is built from real images. Finally, the recognition



Table 1: The properties of sign representation and recog-
nition of several existant methods.0American Sign Lan-
guage.1Electronic dispotifs (PowerGlove, DataGlove et Cy-
berGlove).2 Japanese Sign Language.3International Sign
Language. 4The type of vocabular is pre-defined and has
any configuration.

Authors/ Size of Type of Succesv rate
Properties. Vocabulary. Vocabulary. Capture. Representation. Recognition. %

Gourley 26 ASL0 Elect.1 Templates Perceptron Neural Network 95
Harling 5 ASL0 Elect.1 Templates Perceptron Neural Network 96
Murkami et al. 42 JSL2 Elect.1 Templates Perceptron Neural Network 98
Takahashi et al. 46 JSL2 Elect.1 Joint and orientation coding Matching Templates 65
Gao 13 D. Set4 Camera Convex/Concav coding BackPropagation Neural Network 80
Uras et al. 25 ISL3 Camera First size functions familly K-Nearest Neighbor 85
Uras et al. 25 ISL3 Camera Second size functions familly K-Nearest Neighbor 86
Freeman 15 D. Set4 Camera Orientation Histograms K-Nearest Neighbor 75
Our method 25 ISL3 Camera Momennt-Based Size Functions Perceptron Neural Network 90

stage is performed using a neural network. This new inter-
pretation allowed us to develop an improved version of sys-
tems recently proposed for ISL recognition (Fig. 5). In the
next section, related work particulary on shape representa-
tion techniques, is briefly reviewed. Then, size functions are
introduced and illustrated through a simple example in Sec-
tion 3. Section 4 describes the representation of signs which
can be obtained by a pair of size functions. Finally, the im-
plementation and the experimental results are illustrated and
summarized in Section 5.

2 Related Work

Attempts at machine sign language recognition began to ap-
pear in the literature over ten years ago. Table 1 shows sev-
eral methods used for posture recognition.

The systems proposed are based om either instrument
gloves or computer vision. Instrument glove techniques
[14, 12, 7, 10] use a variety of sensors to provide information
about hand shape, position and orientation. This captures
the richness of hand gestures and make it simple enough
to recognize postures efficiently. However, the user holds
some hardware which can be awkward and uncomfortable.
Furthermore, the cost of Datagloves is still high. We are in-
terested in approaches based on computer vision and used
for posture recognition, this removes the need for intrusive
cabling and makes tracking multiple objects feasible. Gao
[6] used a new chain coding-based representation and Back
Propagation Neural network to achieve the recognition of
thirteen pre-defined hand postures. Freeman [3] describes a
vision-based system to recognize fifteen postures using ori-
entation histograms as a representation method and the rule
of k-nearest neighbor to achieve the recognition.

More recently a new framework for the analysis of visual

shapes has been proposed by P. Frosini [5]. In this frame-
work a shape is represented in terms of integer-valued func-
tions of two real variables, calledsize functions. In his recent
work, Uras [15] used a family of size functions to represent
the sign language alphabet; the recognition stage was per-
formed using the k-nearest neighbor rule.

The methods presented in Table 1 are difficult to com-
pare for two main reasons. First, they were not all tested
in the same manner using the same gesture set; and second,
they do not all use the same set of postures. Sign recog-
nition from static grey-level images requires a system that
is tolerant to image shifting, scaling, rotation, degradation,
and deformation. In what follows, we are interested in the
study of existing features according to these criteria. Fur-
thermore, we need features that provide enough information
to distinguish between various signs and are computation-
ally inexpensive.

Table 2: Feature evaluation: (1) Scale invariance. (2)
Translation invariance. (3) Rotation invariance. (4) Invari-
ance to lightning changes. (5) Robustness to the number of
fingers. (6) Computational complexity. (7) Completeness:
We are not including this criteria in this table because, it is
difficult to compare the features with regarding to the com-
pleteness.

Selected feature/Criteria (1) (2) (3) (4) (5) (6)

Basic chain code No Yes No No No Yes

Convex-Concav coding Yes Yes Yes No Yes Yes

Fourier Desc. No No No No No Yes

Hu Invariant moments Yes Yes Yes No No No

Alt Invariant moments Yes Yes No No No No

Principal axes Yes Yes No No No Yes

Grey level histogram No Yes Yes No No Yes

Hist. of local orientation Yes Yes No No No Yes

Size Functions Yes Yes No Yes Yes No

Our method Yes Yes No Yes Yes Yes

To summarize, a visual inspection of different hand signs
suggests features which satisfy the following conditions:



1. Scale invariance: The signs can be executed by differ-
ent persons with different hand size.

2. Translation invariance: The location of the hand sign in
the image can change.

3. Slight rotation invariance over the image plan: The ori-
entation of the apparent viewed sign can be slightly dif-
ferent from one person to another. However, we sug-
gest a representation which is sensitive to the orienta-
tion of signs. For example, if we turn the sign “D”
through an angle of90o, we will obtain an unknown
sign.

4. Invariance to lighting changes: The illumination con-
ditions of the scene can change.

5. Robustness to the combination states of all parts (fin-
gers) of the hand: Features must be sensitive to the
number of fingers and their position.

6. Computational complexity: The representation must be
fast to compute.

7. Completeness: It must be sufficient to distinguish be-
tween different signs.

Table 2 shows the properties of features which have been
widely used in pattern recognition and image analysis, in-
cluding size functions based representation [16] and our
method: (1) Basic chain code and (2) Convex-Concav chain
coding [6], (3) Fourier descriptor [9], (4) Invariant moments
of Hu [11], (5) Invariant moments of Alt [2, 1], (6) Principal
axes of inertia [8], (7) Grey level histogram, and (8) His-
togram of local orientation [3]. As we can see from Table 2,
these techniques are unlikely to be appropriate for the rep-
resentation of sign language with regard to the criteria fixed
at the begining of this section. However, we chose principal
axes of inertia as a basic feature in building a new represen-
tation model around a mathematical tool called size func-
tions. Furthermore, as we can see in Table 2, principal axes
are sensitive to sign orientation. Before presenting this new
model, in the next section we will describe size functions.

3 Size Functions

In this section we will introduce the main idea of size func-
tions using an example. Let us assume that Fig.2(a) repro-
duces the graph of a function', named themeasuring func-
tion, obtained as the result of some measurement on any
sign. Let us evaluate the size functionl' at a specific point
(x; y) of the real plane, wherex < y.

The shaded regions of Fig.2(b) and (c) identify the parts
of the graph with' � x and' � y respectively. The su-
perposition of Fig.2(b) and (c) is displayed in Fig.2(d). The
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Figure 2:Example of size function. (a) Graphe of some mea-
suring function'. (b) and (c) The shaded regions identify
the set of points with' � x and' � y respectively. (d) The
darker shading identify the regions with' � x and' � y.
(e) Graph of the size functionl' for all possible values ofx
andy. Each label denotes the value ofl' within the undely-
ing region.

darker regions of Fig.2(d) clearly correspond to the intersec-
tion between the parts of the graph with' � x and' � y.
The size functionl' (see Fig.2(d)) can be defined by the
number of distinct light regions which have a segment in
common with at least one dark region. In fact,l' equals the
number of connected components of the set'�1((�1; y])
which contain at least a point of the set'�1((�1; x]).
Hence, in the specific example of Fig.2(d),l' = 2, since
only the leftmost and the rightmost light regions contribute
to l'.

Let us briefly recall the main results and properties of the
size functionl' [17].

� The size functionl' is computed within the triangular
regionT' = f(x; y) : 'min � x < y � 'maxg, where
'min and'max are the minimum and the maximum of
the measuring function' respectively. Morever, the

normalisation�' =
'� 'min

'max � 'min
ensures that the size

functionl �', computed within the triangular regionT �',
whereT �' = f(x; y) : 0 � x < y � 1g, is invariant to
scale transformation.

� l'(x; y) is non-decreasing in x and non-increasing in y.

� l'(x; y) is finite forx < y.

� l'(x; y) = 0 for everyx < 'min.

� l'(x; y) = 1 for every point (x; y) such that there ex-
ists a non-isolated pointQ for which x > '(Q) and
y < '(Q).

� The size function inherits the invariance properties of
the measuring function. Therefore, it is sufficient to
find any measuring function which satisfies the invari-
ance requirements proposed in the previous section.



According to the proposed framework, the representa-
tion of signs by means of size functions is based on the
definition of some measuring function. Since for a giving
measuring function two different signs can produce the same
size function, the choice of an adequate measuring function
is a fundamental problem and the measuring function must
satisfy the requirements described in Section 2.

In the next section, we will present our approach for the
sign representation, based on the new size functions gener-
ated by a new pair of measuring functions.

4 Sign Representation

Unfortunately, the theory of size functions does not provide
a formal tool to determine an adequate measuring function.
Therefore, the search for measuring functions must be car-
ried out heuristically. In previous work [18, 16, 15], an im-
plementation of the theory of size functions based on the
edge of viewed postures was proposed. In [16] the sign rep-
resentation is obtained by means of seventy size functions
and thus requires more than 70 feature vectors, each of them
corresponding to the size function of each sign computed in
a particular orientation about the image plane.

Let us illustrate the empirical principles behind the
search for measuring functions for the representation of the
the sign language alphabet. As we noted in Section 2 an
adequate measuring function must be sensitive to the ori-
entation of the signs relative to the image plane. Here, we
assume the elongated hand shape has an axis of elongation
which can be used to define the orientation of the hand sign.
In other words, it is necessary to find the orientation of each
sign and to use it as a parameter of the measuring function.
For elongated hand shapes, we choose the axis of the least
second moment (the minor axis of inertia) as the orientation.
In order to have more information about the hand shapes, we
also consider the second axis (the major axis of inertia).

Table 3:Orientation of the Major Principal Axis

�11 �20 � �02 � �

0 - 0 +�

2

+ - 0 � � � ��

4
+�

2
� � � +�

4

+ 0 0 +�

4

+ + �

4
� � � 0 +�

4
� � � 0

0 0 0 0
- + 0 � � � ��

4
0 � � � ��

4

- 0 0 ��

4

- - +�

4
� � � 0 ��

4
� � � ��

2

In terms of moments, the orientation� of the principal
axis near thex axis is given by the following equation [13]:

� =
1

2
tan�1(

2�11
�20 � �02

) (1)

where� 2 [��
4 ;

�
4 ], �11; �20 and�02 are the central mo-

ments. The specific orientation of either principal axis may
be determined from the specific values of�11 and�20��02.
Table 3 illustrates how the orientation of the major principal
axis,�, may be determined using� and the second moments.

We can now define a new pair of measuring functions as
follows:

'1(p) =

�
d(p) if p lies above the major principal axis

0 else

and

'2(p) =

�
d(p) if p lies above the minor principal axis

0 else

whered(p) is the distance from an edge point of the
sign to the center of mass. Thus we have two size functions
l1('1) andl2('2) generated by'1 and'2 (see Fig.3(b) and
Fig.3(c)).

(a) (b) (c)

Figure 3:A paire of Size Functions. (a) The grey-level image
of the sign “C”. (b) The size function computed using the
major axis. (c) The size function computed using the minor
axis.

Intuitively, it appears plausible that a complete represen-
tation can be obtained by looking at the four possible regions
generated by the two axis. However, after much empirical
experimentation, we found that the pair of measuring func-
tions ('1 and'2) are sufficient to capture the shape of all
alphabet hand signs. Note that in our case' is defined as
' :  ! < andl' : <2 7�! @ where represents the edge
map of the sign. The size functionsl1('1) andl2('2) gen-
erated by the measuring functions'1 and'2, are defined on
the real pair(x; y) according to the following procedure.

Let us consider the graphG as a discrete approximation
of one of the edge maps obtained using the major principal
axis (the same procedure is used for the second graph gen-
erated by the other, minor, principal axis) (see Fig.3(b)).

1. Find the subgraphG'�y ofG determined by the points
p with '(p) � y;

2. Identify the connected components ofG'�y;



3. The size functionl' at point (x; y) equals the num-
ber of connected components ofG'�y which contain
at least one vertexp, with '(p) � x.

The size function obtained according to the previous pro-
cedure is represented as a triangular region. In order to ob-
tain the size function in the form of a squared matrix which
can be used as an input vector to the neural network, we
need to normalize the size function by following these two
steps:

1. Step 1: Normalization of the measuring functions
'1 and'2
Let us consider a set of points� representing the sign
edge map and'�(P ) one of the measuring functions,
where P is a point in �. We define a new mea-

suring function �'�(P ) =
'�(P ) � m

M � m
, where

M = max
P2�

('�(P )) andm = min
P2�

('�(P )) are the

maximum and the minimum of the measuring function
'�, respectively (we assume that the edge map of each
sign has at least two points andM > m). It should
be noted that we always havemin

P2�
( �'�(P )) = 0 and

max
P2�

( �'�(P )) = 1. We obtain0 � �'�(P ) � 1. We

say that�'� is the normalization of'. The invariance
of ' implies that if two hand signs have exactly the
same shape with respect to', then they have exactly
the same size function with respect to�'.

2. Step 2: Normalization of the size function

(a) We choose a positive integerr;

(b) For every(i; j) 2 f1; 2; :::; rg
we compute the valueuij = l(�; �'�)(

i
r
; j
r
).

The normalized size functionuij is a squared matrix.
It is invariant to scale changes, translation and orientation.
However, as we mentioned in Section 2, the representation
of signs must be sensitive to sign orientation. Consequently,
our representation model is defined by both the two size
functions and the principal axes. The normalisation algo-
rithm described above may be sensitive to noise. As a con-
sequence, it can happen that two edge maps�1 and�2 have
similar shapes but the maximum and the minimumM and
m of the measuring functions'1 and'2 are very different.
It follows that the size functionsl1('1) andl2('2) of �1 and
�2 may be different (see Fig.4).

In order to reduce the effect of noise during normaliza-
tion of the measuring functions, we can proceed as follows:

1. Assume that the set� = fP1; P2; :::; Png is a finite
approximation of the sign edge map.

2. Let us set� =
1

n

nX
i=1

'�(Pi).

3. Then we setd+k = (
X

'�(Pi)>�

('�(Pi) � �)k)
1
k , where

k is a positive real number.

4. Similarly, we setd�k = (
X

'�(Pi)<�

(�� '�(Pi))
k)

1
k .

5. Finally, we setMk = �+ d+k andmk = �� d�k .

(a)

■P

(b)

(c) (d)

Figure 4:Normalization of the measuring functions of noisy
edge. (a). The edge map of the sign “L”. (b) The noisy edge
map of the sign “L”. (c) and (d) are the size functions of
edge map (a) and (b) respectively.

Unlike M andm, the valuesMk andmk are stable
enough when we apply some noise to the set� . We can
show that lim

k!+1
Mk = M , lim

k!+1
mk = m, lim

k!0+
Mk =

+1, and lim
k!0+

mk = �1. So, on the one hand we cannot

choose too large a value fork, otherwiseMk andmk would
be approximatelyM andm, which can change abruptly be-
cause of noise. On the other hand, if we choose too small a
value fork, Mk andmk are too large, so that the “window”
[0; 1]� [0; 1] in which we compute the normalized size func-
tion corresponds to too large a subset[mk;Mk]� [mk;Mk]
of the real plane before normalization, and many details are
lost. For our purpose we chosek = 4.

In order to check whether or not this representation was
correct, a simple recognition scheme has been developed
and tested. Let us now discuss the construction of this recog-
nition scheme and the experimental results obtained.

5 Experimental Results

Our recognition system differs from previous work on the
integration of two size functions, principal axis, and neural
network. The proposed system architecture is shown in Fig-
ure 5. It includes four major modules : edge detection, prin-
cipal moment axis computation, size function computation,



and recognition. The system applies the edge detection al-
gorithm to find the border of the hand shape. Then we com-
pute the principal axes. The size functions are computed and
normalized. Finally, we use a three-layer feedforward neu-
ral network for the recognition. The input to the network
is the feature vector obtained in the previous section, which
consists of 146 features including both size functions and
principal axis orientation. The output of the network is a
25-dimensional vector.

Im
a
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C
la

ss
ifi

ca
tio

n

Edge and long chain detection

Major and Minor
principal axes
computation

phase 2

phase  1 

and normalization

phase 4 phase 3

Neural Network
Size function computation

Figure 5: Recognition System Architecture

Table 4:Sign recognition rate from training set T1, T2 and
T3.

Tests T1 T2 T3
Signs S2 S1 S1 S2

“A” 2(E) 2(E) —— ——
“B” 1(F) 1(F) —— 1(F)
“C” —— —— —— ——
“D” —— 1(I) —— ——
“E” —— 1(A) —— ——
“F” —— —— —— ——
“G” —— —— —— ——
“H” 1(G) —— 1(G) ——
“I” —— —— 1(O) ——
“J” 1(M) —— —— ——
“K” —— —— —— ——
“L” —— 1(D) —— ——
“M” 2(N) —— —— ——
“N” 1(M) —— 1(M) ——
“O” —— 1(H) —— 1(H)
“P” 1(G) —— —— ——
“Q” —— 1(C) —— 1(C)
“R” —— —— —— ——
“S” 1(A) 1(T) 1(A) 1(T)
“T” 2(S) 1(S) 1(S) ——
“U” —— 2(V) 1(R) ——
“V” —— —— —— ——
“W” 1(Q) —— —— ——
“X” 1(U) 1(G) 1(O) ——
“Y” —— —— —— ——

Rates 85% 89% 93% 96%

Three series of experiments were performed based on
three different tests T1, T2, T3. We explored 20 sequences
of signs performed by two different subjects S1 and S2 (10
sequences each). In the first test (T1), the neural network is
trained on 10 sequences performed by subject S1. Recog-
nition was tested on 10 sequences performed by the second
subject, S2. For test (T2), the neural network is trained on 10
sequences performed by subject S2. Recognition was tested
on 10 sequences performed by the other subject, S1. Finally,

in the last test, (T3), the neural network is trained on 5 se-
quences from S1 and 5 sequences from S2. Recognition was
tested on 10 sequences provided by S1 (5 sequences) and S2
(5 sequences). The recognition rates are shown in Table 4.

A few comments are in order. First, it is interesting to
note that if we compare our system with the system of C.
Uras and A. Verri [15], we find that the recognition suc-
cess is not different, however our system is efficient because
we used only two size functions. It should be recalled that
C. Uras and A. Verri used seventy size functions. Second,
looking at Table 4, we discover that the recognition rate is
higher in the last test (T3), in which the training and test
sets were performed by the same subjects (S1 and S2). No-
tice the overall graceful degradation of the recognition rates
when the training sets and the testing sets are performed by
different subjects (T1 and T2). Lower error rates are ex-
pected if the training and testing sets are performed by the
same subject (about 96%). Third, the confusions involve
signs for which internal edges appear to be important as for
”S” and ”T”,”M” and ”N”, “A” and “E”, due to the similarity
of the signs (see Fig.1). To eliminate this problem, we can
use internal edges and another network which can be trained
using the misclassified feature vectors of the confused signs,
to improve the performance of the network. The use of 3D
informations can also increase the recognition rates of the
overall system.

6 Conclusion

In this paper we have shown an unencumbered, vision-
based system for recognizing International Signing Lan-
guage (ISL) without invoking complex hand models. The
scheme is based on the use of a pair of moment-based size
functions as input to a neural network classifier. Unlike pre-
vious work proposed by C. Uras [15], our scheme invloves
the use of a single pair of size functions, rather than fami-
lies of seventy size functions. The results obtained indicate
that the system is able to recognize viewed signs efficiently
with a good percentage of success. It is concluded that size
functions can be useful in analyzing sign language alphabet
recognition. The experience gained from studying ISL will
also contribute to the study of other sign languages, such
as ASL(American Sign Language) and may be useful for
the interpretation of a large set of virtual reality commands.
Some improvements are needed, such as the use of internal
edge information and a second network trained on refused
and misclassified signs.
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