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Abstract

Image stabilization is the image registration applied to one
video image sequence from a single camera, which has
been identified as the key first step for the task of multi-
spectral image fusion for aerial surveillance applications.
The stabilization of infra-red (IR) aerial image sequences
is challenging owing to the low contrast and signal-to-
noise ratio of the images, and to potentially large
viewpoint changes that result in images with large rotation
and scale change and perspective distortion.  We
demonstrate a  new feature-based method for IR aerial
image sequence stabilization. We use the greylevel
differential invariant (GDI) matching due to Schmid and
Mohr which is invariant to rotation and scaling.
Extensions to the basic GDI method are introduced that
improve the performance of the method. We use M-
estimation for the image registration parameters. The
method is robust to outliers returned by the GDI method.
We verify the point correspondence under orthographic
projection using the epipolar constraint.  Experimental
results are reported for real-world and synthesized IR
image sequences.

1 INTRODUCTION
Imaging sensors of different modalities, for example,

visible and infra-red, provide complementary information
which, if properly fused, can assist the observer in the
image interpretation task.  Image stabilization is a key step
in this process.  Image stabilization is the image
registration applied to one video image sequence from a
single camera. When the camera is mounted on an
unsteady or a moving platform and objects are far from the
camera, the 3-D space motion of the camera will affect the
images.

Until now, the primary means available to stabilize
images from a camera on a moving vehicle has been to
mount the camera on an electro-mechanical stabilizing
platform. These stabilizers are bulky and expensive. Their
performance degrades with vibration in the critical 0 – 20
Hz range.  An alternative stabilization method uses image
processing techniques to first estimate and then eliminate
the scene motion that is due to camera motion by warping
each image frame into precise alignment with a reference
frame.

The image stabilization task has been specified in
general terms as follows.  Given an image sequence
usually consisting of at least 10 to 30 seconds of data, a
special frame called the reference frame is chosen at or
near the beginning of the sequence.  Frames subsequent to
the reference frame shall be registered to the reference
frame in such a way that the frames are precisely aligned
with the reference image.

The conventional image registration method uses block
matching techniques.  The block matching utilizes the full
image information and can be applied to any type of
image, rich or poor in texture. The block correlation is
robust against random noise and has high accuracy.
However, block matching can account for only translations
and only approximately for other image distortions. It is
expensive to compute and becomes prohibitive when the
image displacement is large. Also, the cross-correlation
based on image intensity similarity is sensitive to
environment changes and is not applicable for registration
of multi-spectral images [2].

On the other hand, feature-based image matching can
account for any image deformation and can be insensitive
to multi-sensor modalities by selecting structurally salient
features. It is quick to compute.  However, the feature-
based methods will fail to find matches in structure-less
areas. Its reliability depends on the feature extraction



process. Therefore, robustness of the matching process is a
critical issue.

The only known geometric constraint between two
images of a single scene is the epipolar constraint.  The
epipolar geometry describes relations between
corresponding points in two images, and is, therefore,
useful for image matching. Zhang et al. [18] proposed a
robust technique for image matching for uncalibrated
cameras based on geometric verification using the epipolar
constraint.  They use cross-correlation between local
supports of the feature points for the initial matching,
which is not invariant to scaling, rotation and other
deformations, and is the main limitation of their approach.
They use Least Median of Squares (LMedS) to discard
outliers, that allows up to 50% false initial matches in the
estimation of the epipolar geometry.  Our experiments
show that Zhang’s approach can provide a large number of
correct matches for outdoor images from a ground based
camera where the perspective projection results in local
translations of the corresponding points.  However,
Zhang’s approach fails in its initial matching with aerial
images where there is, for example, a large global rotation
of the input scene.

In this paper we propose an approach for the
stabilization of real-world aerial infra-red image
sequences. In the aerial image sequences the frame to
frame motion can be very large. The IR images are
generally noisy with low contrast.  We view the task of
image stabilization as a problem in image registration, that
can be accomplished using image matching methods.  A
classic approach to image matching is to hypothesize then
verify the correspondence of features between images [9].
In this approach, the initial matching is critical for a
successful matching and registration.  To improve the
initial matching by cross-correlation Deriche [4] added the
directions of the gradient, curvature, and a disparity
measure. Hu [7]  suggested to apply the cross-correlation
in several directions and Ballard [1] used steerable filters.
Schmid and Mohr [12] developed a point matching method
based on greylevel differential invariants (GDI), which is
invariant to image rotation, scaling and translation.  We
extract feature points using the Harris-Stephens corner
detector [6], which is efficient to compute and has been
shown to be one of the best detectors in terms of
repeatability with viewpoint change and other scene
variables [14].  It is efficient also to extract corner points in
the texture of the IR images.  We use the greylevel
differential invariant matching method to find an initial set
of matches.  Three additional enhancements to the basic
greylevel differential invariant matching method are
introduced and tested: (1) Search over the GDI space with
k-d trees to speed up the matching process, since a query
finishes in logarithmic expected time, (2) Scale-space
verification of matches to improve the ratio of true to false
matches, and (3) Determining the covariance matrix for
normalizing differential invariants at runtime.

The GDI method provides a set of matches that often
contain outliers which can seriously perturb the estimation
of the image transformation. We use M-estimation which
is robust to outliers and is computationally efficient, and a
variant of least median of squares, which is more
computationally expensive, in the case that M-estimation
failure is detected.  For aerial images, the distance from
scene to camera is much larger than the depth of the scene,
and the field of view may be small.  In this case, the
orthographic projection provides a good approximation to
perspective projection, as shown by Pritt [11] as well as
Shapiro et al. [15], and then the unique optimal solution, in
a least squares sense, for registering a pair of images, is the
global affine transformation with local distortion modeled
by a displacement along parallel epipolar lines proportional
to the height of the scene point [11].  However, Pritt does
not address the critical issue of the initial matching,
estimation of the transformation parameters in the presence
of outliers, nor are results presented for real world image
data.  We fit the GDI matches to the global affine
transformation, that accounts for image scaling and
rotation in the important initial matching stage and
implement a robust image registration.  It is by
incorporating robust estimation into the image registration
process that we perform a match verification process using
the epipolar constraint.

2 Enhanced greylevel differential invariant
matching

At each feature point in the image found by the Harris-
Stephens corner detector, a greylevel differential invariant
(GDI) vector is computed.  The GDI representation and
matching method are invariant to image rotation, scaling
and translation [12].  The representation is fairly robust
with respect to rotation in depth that leads to
foreshortening of surface patches, i.e., in general, a local
affine distortion of the brightness surface. The greylevel
differential invariants are based on the derivatives of the
Gaussian filtered image in a representation called the local
jet.  The local jet represents the truncated Taylor series
expansion of the image function and is useful for encoding
the local geometry of the brightness surface.  The use of
Gaussian smoothing makes the differentiation well posed
in addition to having other nice mathematical properties.
The details of the greylevel differential invariant
representation can be found in [12].  The components of
the GDI vector representation are rotationally symmetric
functions.  Differential invariants can be made invariant to
an affine transformation of the brightness function by an
appropriate normalization that yields a vector of 7
components.

To give scale invariance over a fixed range we compute
a set of scales centered on a reference scale, σ0, such that

056 σ=σ i
i )/(  where i ∈ (-n… -1, 0, 1… n).  A value



of four for n yields the scale factor range 0.48 to 2.07,
hence there are nine differential invariant vectors for each
keypoint.  This is a multi-scale representation.  The 20
percent factor is empirically derived and reflects the
expected differential scale range over which the invariants
do not change appreciably.
Nearest neighbour search by k-d tree  The
Mahalanobis distance is used to determine the nearest
neighbour.  Points are declared to be corresponding when
the pair of points from two images are mutually selected as
closest. The space of differential invariant vectors can be
organized in a hash table [12] or with a tree representation
such as the k-d tree. Nearest neighbour searching with k-d
trees reduces the search time to logarithmic expected time.
The expected number of records examined to satisfy a
query is given by the expression

kkbkGbbkR }]/)({[),( / 11 +≈ , where k is the record
dimension, b is the number of records in a bucket, and

1≥)( kG  is a constant that accounts for the geometric
properties of the norm used for the distance measure [16].
For our implementation of GDI matching, 1=)( kG , k is
7 and b is 1, hence R(7,1)=128.
Match verification in scale-space  Experimental
results suggest that nearest neighbour matching with
differential invariants is scale sensitive over moderate
viewpoint changes.  A local multiscale analysis is used to
filter out scale-space unstable and hence potentially
incorrect matches.  The full differential invariant matching
process is carried out at three reference scales that differ by
multiples of ten percent of the reference scale σ0, i.e.,

)1.0*1(0 k+σ  for k=0,..,2.  The value of ten percent is

half the expected scale sensitivity of differential invariants.
This value was found experimentally to yield good results.
Too large a value eliminates most matches and too small a
value does not effectively eliminate scale unstable
matches.  A match is scale-space verified if it exists at all
three scales.  Experimental results demonstrate that this
verification step significantly increases the ratio of correct
to incorrect matches.  This step increases the
computational cost by a factor of three but it is
parallelizable.
Normalization  The variant of k-d tree used here
requires that the data satisfy a Euclidean norm.  An
appropriate transformation of the GDI vectors by a suitable
covariance matrix accomplishes this.  The covariance
matrix describes the expected variance of the differential
vector components with respect to changes in viewpoint,
illumination, sensor properties, and noise.  For an image
retrieval task [13] the covariance matrix is determined by
averaging together over all keypoints the covariance matrix
generated for each keypoint by tracking observations over
an extended image sequence.  It is not clear, however, if
this is suitable for the image matching problem.  First, we

assume that tracking is generally not an option.  Secondly,
the resulting covariance matrix may not be suitable for all
image pairs to be matched, except, of course, the images
from the sequence itself.  Computing and combining
covariance matrices over several different sequences may
be sufficient for a variety of image retrieval tasks.

Instead, we adopt a classical perturbation approach to
estimating the covariance matrix for the differential
invariant vectors.  Such an approach is frequently used
when an analytic solution is not feasible.  For example, this
approach is used to determine datum/model compatibility
for the RANSAC algorithm [5].  The RANSAC procedure
uses data perturbation to estimate implied error bounds for
a given model.  We compute a covariance matrix directly
from the given image pair by modeling brightness
variation due to all the factors mentioned above by
normally distributed noise added to the images.  The noise
variance is some fraction of the variance of the image
brightness over the entire field of view.  A value of 25
percent of the brightness variance has been used in the
described experiments.  This is an empirical value that has
yielded good results.  Furthermore, the matching results
are not overly sensitive to this value.  The final covariance
matrix is then estimated by averaging together a large
number of covariance matrices generated from differential
invariant vectors computed from images with and without
added noise.

3 Image registration with M-estimators

The following steps outline the registration algorithm.

1. Detect Harris-Stephens corners with derivative of Gaussian
filters, σ = 1 pixel, for reference and non-reference images.

2. Low pass filter reference and non-reference images σ = 4
pixels.

3. Perform GDI matching on detected corners yielding GDI
matches.  Baseline filter scale is 5 pixels.  If < 4 matches
then FAILURE and go to step 9.

4. Eliminate gross outlier matches. The gradient angle test
deletes those matches that have an angle change of a
magnitude greater than 45° from the median angle change
for all matches. These matches are defined as the gross
outliers.  Remaining matches are called candidate matches.
If < 4 candidate matches then FAILURE and go to step 9.

5. Estimate p1 to p6 with Fair weight function.  If iterations do
not converge then FAILURE and go to step 8 (or return to
8c if previous step was 8b).

6. Initialize Tukey bi-weight function weights using parameter
estimate from previous step.

7. Estimate p1 to p6 with Tukey bi-weight function. If iterations
do not converge then FAILURE.

8. If  FAILURE or ≥ 50% of weights = 0 during Tukey
iterations then

8a) Select at random 4 matches.
8b) Execute steps 5 to 7.
8c) If any weight = 0 or FAILURE then discard result else

store parameter estimate and median residual over
candidate match set.



8d) Repeat 8a-c until 71 subsets found or until iteration limit
exceeded.

8e) If 71 subsets found then do steps 6 & 7 with lowest
median residual parameter estimate else FAILURE.

9. If not FAILURE then resample non-reference image as
registered frame according to parameter estimate else copy
reference frame as registered frame.

10. If no more frames then QUIT else return to step 1 processing
next non-reference image only.

3.1 Epipolar Constraint

The only known geometric constraint that exists
between corresponding point matches from two or more
views is the epipolar constraint, which can be used for
image matching. When the field of view is small and
variation in depth of the scene is small compared to its
average distance to the camera, the orthographic and scaled
orthographic projection is a close approximation to the
perspective projection model [11][15].  The approximation
is also good for large field of view if the separation angle
between two cameras is small [11].  Under this
approximation, the model locates the optical center at
infinity, hence, the projection rays are parallel to one
another and perpendicular to the image plane. The epipoles
are situated at infinity in the image plane and the epipolar
lines are parallel.

The parallel projection is linear with the registration
function expressed by [11]

eAF ),(),(),( 111111 yxhyxyx += ( 1 )

where F = ( )22 , yx  maps points ( )11, yx  from the first
image to the second, A(x1,y1) is an affine transformation
given by
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and ( )11, yxh  is the z coordinate of the non-occluded
point in the input scene. Its value depends on the choice of
the scene coordinate system. The vector e is the epipolar
vector. The parallel epipolar lines are expressed as
A(x1,y1) + αe which depends only on the position and
orientation of the two image coordinate systems relative to
the scene coordinate system and α is a real number. The
registration function is globally defined by an affine
transformation. Eq. ( 1 ) accounts explicitly for the depth
variation via the height function h(x1,y1) as a local
distortion which are displacements along epipolar lines and
proportional to the heights in the scene.

The choice of parameters A(x1,y1), h(x1,y1) and e in Eq.
( 1 ) is not unique. The solution becomes unique with
normalization constraints proposed by Pritt, namely that
the zero and first order moments of the scene’s height
function h(x1,y1) be equal to zero.  Under this constraint, all

the terms involving h disappear in the equations for the
least mean square solution of Eq. ( 1 ) yielding the least
mean square estimate of the affine transformation A(x1,y1).
The affine component of the registration function
determines the least squares estimate of a planar
approximation of the scene structure.  After the
determination of A(x1,y1), the epipolar vector e and the
scene height function can be recovered from the residuals:

s  = x’2 - [p1 x1 + p2 y1 + p3] ( 3 )
and

t = y’2 - [p4 x1 + p5 y1 + p6] ( 4 )

where (x’2, y’2) is the observed point in the second image
that corresponds with (x1,y1).  The slope of the epipolar
vector e is given by

2])4([ 2/12 ÷++= βδβm ( 5 )

ZKHUH� �  � Σ(ti
2 - si

2)/ Σ(siti�� DQG� �  � VJQ�Σ(siti)).  This
estimate for the slope of the epipolar line is the least
squares solution for the objective function that minimizes
the orthogonal distances of the points (si, ti) to the line.
The robust estimation of the affine transformation
parameters therefore implements a verification of the
matches using the epipolar constraint.  The epipolar vector
e is given by

e = [e1,e2]
T = [1/(1+m2)1/2, m/(1+m2)1/2]T. ( 6 )

The solution for hi is given by

21 etesh iii += . ( 7 )

3.2 M-estimation applied to image registration

Let r(si,ti) be the ith residual, i.e., the difference between
the ith observation and the current estimate of the fitted
value.  The classic least squares problem seeks to minimize

∑i ir
2 which is known to be unstable in the presence of

outliers in the data.  The M-estimators are designed to
reduce this instability by replacing the squared residuals ri

2

by a function of the residuals which yields the problem
[17]

min ∑i ir )(ρ ,

where ρ is a symmetric, positive definite function with a
unique minimum at zero and is chosen to be less increasing
than square.  The problem is not solved directly but is
implemented as an iterated re-weighted linear least squares
solution.

We seek to estimate pj for j=1 to 6 from Eq. ( 2 ).  We
solve for the parameters p1 to p3 using the M-estimation
formulation
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over i=1,…,k data points and j=1,2,3.
Similarly for p4 to p6 we solve

0)( =
∂
∂∑i

j

yi
yiyi p

r
rrw ( 9 )

over i=1,…,k data points and j=4,5,6.

3.3 Choice of objective functions

Some ρ-functions assure a unique solution, but since
they only reduce the effect of outliers, the estimator can be
biased. Other ρ-functions do not guarantee a unique
solution, but reduce considerably the effect of outliers or
even more, eliminate them.  Since no ρ-function is perfect,

we use both types of ρ-functions as proposed by Huber
[8].  We began the estimation process with the objective
function Fair and then refine the estimate with Tukey's bi-
weight function. For both functions, the convergence
threshold used is 0.1% in the relative difference between
iterated parameter estimates.  The Fair distribution has
continuous derivatives up to third order and yields a unique
solution.

Given these choices for the objective function the
estimator of the global affine transformation can be written
as follows from Eq. ( 8 ) for the residual in the x
component
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iteration of the weight, j
iw , is one of Fair or Tukey's bi-

weight as described above.  Similarly, for the y component
from Eq. ( 9 )
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where 
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Eqs. ( 10 ) and ( 11 ) give a linear system of 6
equations in the 6 unknown parameter variables p1 to p6

which are solved for iteratively in two phases.  The first
phase uses the Fair weighting function to yield an initial

estimate.  The final estimate uses the Tukey bi-weight
function with weights initialized with the parameters from
the Fair estimate.

The registration function for the experimental results
reported here is given by F(x,y) = A(x,y), i.e., the height
term is ignored.  The assumption is that the height function
values are not large enough to significantly perturb the
registration for the aerial image sequences.  It is
straightforward to generalize the approach by the addition
of the term h(x,y)⋅e to the global affine transformation.
The drawback is the necessity to estimate h(x,y) over the
entire field of view.  This requires us to interpolate the
height function from known point correspondences which
will yield a poor estimate for a sparse set of point matches
or, alternatively, one can compute a dense matching using
a method such as optical flow.  Match density for point
features can be increased by searching for additional
matching points along the estimated epipolar lines, a one
dimensional search.

3.4 Ill-conditioned solutions

In some rare cases, convergence given by the Fair
function is not the one we would expect. This can happen
when the GDI method returns matches where the number
of outliers is not relatively small or their distribution
perturbs the estimator significantly.  In this case, the
minimum reached depends upon the influence of the
outliers and the initial value of the residual function.  The
Fair function may converge to a minimum such that many
of the matches have relatively small weights. After
convergence of the Fair function, Tukey's bi-weight
function seeks to improve the estimate of the parameters
by eliminating the effect of large outliers. If we then look
at the ω(i), we see that the majority of the matches are zero
weighted.

To override this situation, we added a least median of
squares process which provides a new initial parameter
estimate that is then passed to the Tukey's bi-weight
function process for computing a final estimate.  We
defined as a threshold for computing a revised initial
estimate that at least 50% of all matches must be 0-
weighted from the final estimate provided by M-estimation
with Tukey's bi-weight function. The process that finds a
better initial estimate randomly chooses 4 matches, which
is the minimum number of matches to do a minimally
over-constrained estimate, from the set of candidate
matches. These four matches then pass through the Fair
and Tukey's bi-weight estimation processes as before. The
residual for all candidate matches is computed  according
to the parameter estimate found for this subset. The values
of the estimated parameters and the median residual are
stored. If one or more of the subset ω(i) is 0, the subset
result is ignored. The process iterates until 71 subsets are
selected. This number of subsets guarantees with a



probability of 0.99, assuming no more than 50 percent
outliers, that at least one of the subsets is composed of 4
good matches.  A final estimate is made involving all the
matches using the Tukey’s bi-weight function.  The ω(i)
are initialized with respect to the Tukey function according
to the parameter estimate with the smallest median
residual.  This gives a more robust estimate of the global
affine transformation parameter vector.  Note that this
random search process is more computationally expensive
than the M-estimation process and, therefore, is not used as
the main estimation method.

4 Experimental results

4.1 Infra-red aerial image sequence DIM01

Figure 1 gives the GDI matching results for frames 01
and 20 from the sequence DIM01, a sequence provided by
Defence Research Establishment Valcartier for algorithm
development purposes.  The sequence is acquired at a 4Hz
frame rate by a helicopter mounted infra-red camera.  Note
the large scale change due to the camera translation in the
foreground and a rotation about a point in the lower left
image quadrant.  The scale of the smoothing kernel for the
differential invariants is five pixels with Gaussian pre-
smoothing of the images at a scale of four pixels to reduce
the IR scan noise as well as to compensate for the lack of
fidelity of the actual image transformation with the
assumed transformation.  The GDI model assumes the
image is transformed by a similarity transformation.  The
actual model is better approximated by a local affine
transformation that in turn is a local

Figure 1: Greylevel differential invariant matches. Left
image is frame 01 and right image is frame 20.  Matches
7, 8 and 12 are incorrect.

approximation of the effect of the perspective distortion
due to the translating camera.  Also, because the scale of
the image is increasing, more detail is present in the
nonreference image that leads to a perturbation of the
invariants.  Additional smoothing of the reference and
nonreference images reduces the perturbing effects of the
scale change.  Of the 12 matches 3 are incorrect and are
eliminated by the gradient angle test.

The left image of Figure 2 shows frame 20 resampled
into the image coordinate system of frame 01 in
accordance with the global affine transformation robustly

estimated from nine matches.  Resampling was by bi-linear
interpolation.  The right image of Figure 2 is the difference

Figure 2: Left: Registered frame 20, compare with
frame 01 in Fig. 1. Artifacts near image bottom are from
source image resampled into registered frame.  Right:
Difference of reference and registered frames.

between the registered frame 20 and the reference frame
01.  The contrast of the image is stretched to fill the range
0 to 255.  The width of the brightness discontinuities are
proportional to the error in the registration.  The errors are
due to the lack of match points in the foreground where
perspective distortion is greatest.  Also, the local distortion
term has not been incorporated.  Mislocalization of the
corner points from Harris-Stephens corner detection can
also contribute to the misregistration.  The mislocalization
is proportional to the filter scale of the derivative
operators.  An iterative registration refinement scheme
may be a possible solution [3].

Figure 3: GDI matches for the first of three scales for
infra-red DIM01 sequence. Left: frame 01.  Right:
frame 20.

4.2 Greylevel differential invariant matching
extensions

Figure 3 shows the matches returned by the GDI
matching method for the first of three scale levels with the
differential invariant filter scale equal to 5 pixels.  The
remaining two reference scale levels are 5.5 and 6.05
pixels respectively.  We note the larger number of matches,
22 in all.  Of these 22 matches, 11 are correct or 50%.

Match 7 and 11 are correct but do not appear at all
three scales.  For the 5.5-pixel scale level the number of
matches is 31 of which 14 are correct (45%), and for the
last scale level there are 19 out of 29 matches correct
(66%).  With scale-space verification there are 9 out of 12



correct matches (75%) a large improvement in terms of the
ratio of correct to total matches.

 
Figure 4.  Epipolar lines for frames 01 and 20.
Observations are marked with "+", reprojected scene
points by "¸��DQG� WKH� KHLJKW� FRUUHFWHG� UHSURMHFWLRQV
E\� � ��� � 7KH� ODVW� WZR� IUDPHV� DUH� D� ]RRPHG� YLHZ� RI
point 8 from frames 01 and 20 respectively.

We also note the high sensitivity to small perturbations of
scale exhibited by the GDI matching process.  Finally, the
average number of records searched over both k-d trees
over the three reference scale levels with 900 records in
each tree was 76 in keeping with the expected logarithmic
time to complete a query.  Further results for these GDI
matching extensions are reported in [10].

Figure 5: Reference
image 00 with matches
to frame 08 from GDI
method. Matches 15, 17,
and 20 are incorrect.

Figure 6: Labeled matches
for frame 08 which is
rotated 40º from the
reference image with
additive noise and a
random affine distortion.

4.3 Epipolar estimation

The epipolar lines and height corrected reprojections
were estimated according to Eqs. (8) and (9) and are
plotted in Figure 4.  The slope angles for the epipolar lines
in frames 01 and 20 were –2.7° and –8.1° respectively for
a fronto-parallel rotation angle of 5.4°.
The RMS residual for frame 01 reprojected points before
height correction is 0.85 pixels and after height correction
it is 0.52 pixels.  The RMS residual for frame 20 is 0.97
and 0.69 pixels before and after height correction.  The last
two frames of Figure 4 shows point 8 with the fitted

epipolar line and the reprojected matching point from the
other image before and after correction by the height local
distortion factor.

4.4 Synthetic image sequence Lockheed Boats8

Next is an example of the registration process from a
synthesized motion sequence. These images are from a
sequence composed of 11 frames synthesized from a real
infra-red image.  The motion consists of a continuous
rotation of the sequence reference image with additive
Gaussian noise and a random affine distortion. In this
example the non-reference image is frame 08, which is

Figure 7:Frame 08
registered to reference
image.

Figure 8: Difference
between registered
image 08 and the
reference image.  See
text.

rotated by a 40º angle from the reference image.  Figures 5
and 6 show the matches obtained from the greylevel
differential invariant matching method. The GDI method
provides 20 matches, where 17 are correct.  Matches 15,
17, and 20 from Figures 5 and 6 are incorrect.

Figure 9.  Lockheed sequence epipolar lines for
frames 00 and 08.

Five matches, those labeled 3,8,15,16, and 20 from
figures 5 and 6 were eliminated using the gradient angle
test.  Note that matches 3,8 and 16 were incorrectly
eliminated.  This may be due to the added noise and the
shear introduced by the affine transformation in addition to
the pure rotation.  Figure 7 shows image 08 registered to
the reference image after M-estimation of the global affine
transformation and resampling by bi-linear interpolation.
Incorrect match 17 from Figures 5 and 6 was correctly
eliminated by the Tukey bi-weight estimation function, i.e.,
its weight was set to zero.

Figure 8 gives the image difference between the
registered frame 08 and the reference image.  The scene
object can still be distinguished because the brightness is



not normally distributed after image subtraction in that
area where the brightness values were clipped. Clipping
occurred after adding zero mean noise with a standard
deviation of 15 percent of the standard deviation of the
reference brightness image. Figure 9 shows the estimated
epipolar geometry for the two views.  The epipolar line
slope angle for frame 00 is 28.3º and –13º for frame 08
which gives a fronto-parallel rotation angle of 41.3º.

5 Conclusion

We have demonstrated the stabilization of aerial image
sequences with scale, rotation and large translations using
robust estimation.  The method is computationally
inexpensive and theoretically well founded owing to the
appropriateness of the orthographic projection model
which is a close approximation to the perspective
projection for the aerial images.  We have shown the
greylevel differential invariant (GDI) method that provides
matches for image transformations with rotation, scaling
and some shear.  Three extensions to the basic GDI
matching method were described and experimentally
verified.  The extensions allow for runtime computation of
the GDI vector normalization, increases the ratio of true to
false matches and reduces the query time to an expected
logarithmic time.  We have applied the robust M-
estimation to the solution of the registration function under
the parallel projection model.  We have shown the
robustness of the method to outliers in the initial GDI
matching.

In comparison, Zhang's method can provide many more
matches than the GDI method in many cases, but cannot
provide any correct matches when the affine
transformation includes a large rotation or scaling.
Therefore, the proposed approach is useful for aerial image
registration and Zhang's method can be used for ground-
based image registration.  The initial matching sub-task,
before epipolar verification, is clearly seen to be the major
hurdle to a fully automatic feature-based registration
method.  New methods for this sub-task are presently
under investigation.
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