
Self-calibration of a Stereo Rig without Stereo

Correspondence

F. Dornaika and R. Chung

Department of Mechanical & Automation Engineering

The Chinese University of Hong Kong, Shatin, Hong Kong

fdornaika, rchungg@mae.cuhk.edu.hk

Abstract { In this paper, we introduce a new self-

calibration method for a stereo rig using general rigid

motions. Unlike the existing methods, our method

does not involve any stereo correspondence. Rather the

method requires the computation of camera motion be-

tween pairs of monocular images. We show that the

computation of the stereo geometry, i.e. the rotation

and the translation between the two cameras can be car-

ried out using standard linear algebra tools. We provide

a stability study for the method in the presence of noise.

Synthetic and real experiments demonstrate the feasibil-

ity and robustness of the proposed method. Moreover,

the developed method can be used to solve the stereo cor-

respondence problem as well as the 3D shape of the ob-

served scenes using a cooperative stereo-motion frame-

work.

Keywords Self-calibration, stereo rig extrinsic pa-

rameters, motion estimation, linear algebra

1 Introduction and approach

In the last decade a number of researchers developed
self-calibration methods for vision sensors that require
no known reference object. Such methods can be
used to determine the intrinsic camera parameters, the
stereo geometry as well as the 3D shape of the observed
scene (see [3], [4], [8], [9], [12], for a single moving cam-
era and [5], [18], [19], for a moving stereo rig). The
usefulness of the self-calibration techniques can be tan-
gible in some cases where the sensor parameters are
subject to variations and no known reference objects
are available (active vision, space robots). In [18], au-
thors use motion and stereo correspondences across two
stereo pairs (one motion of the stereo rig). They pro-
pose a method that recovers simultaneously the two
internal parameters and the motion of each camera as
well as the stereo geometry. In [5], authors use stereo
correspondences across a sequence of stereo pairs. Us-

ing di�erent projective reconstructions that are associ-
ated with each stereo pair, they propose an algorithm
for the recovery of the internal parameters and the 3D
Euclidean shape.

All previous self-calibration techniques for stereo en-
tails the solving of the correspondence problem between
left and right images which has been proved to be a
di�cult problem. Several factors make the stereo cor-
respondence problem di�cult: occlusions, large dispar-
ities, photometric and �gural distortions. One can no-
tice that in many cases it is much easier to �nd mo-
tion correspondences than solving for stereo correspon-
dences.

In this paper we attempt to solve the following prob-
lem. Given a sequence of stereo pairs of unknown and
arbitrary scenes (see Figure 1), we like to recover the
stereo geometry without solving the stereo correspon-
dence problem. In the sequel, we restrict our work to
the estimation of the stereo geometry (the rotation and
the translation between the two cameras) and suppose
that the camera intrinsic parameters are known. This
assumption is not unrealistic since the intrinsic param-
eters are usually known weakly or partially. On the
other hand, there is no information about the geome-
try of the stereo rig.

Unlike the existing methods for self-calibration
which consider stereo correspondences as given, our
approach uses motion correspondences to recover the
stereo geometry. The monocular correspondences be-
tween pairs of images are easier to obtain, as an arbi-
trary number of intermediate frames can be available.
Once the stereo geometry is recovered, the stereo rig
fundamental matrix will be known. Then, the stereo
correspondences can be easily recovered. One way to
do so is to use geometrical constraints derived from
the motion correspondences and the computed funda-
mental matrix (cooperative stereo-motion) [1]. The 3D
shape of the observed scenes will be straightforward.
Thus, our proposed method is very useful in recover-



ing the epipolar geometry of stereo rigs whose cameras
have a large orientation w.r.t. to each other (in this
case stereo correspondence will be di�cult).

The proposed method is a two-step approach. In the
�rst step, 3D motions of each camera are estimated us-
ing feature correspondences in two monocular images.
In the second step, using the motion of the left and right
cameras, the stereo geometry of the stereo rig is recov-
ered by minimizing a cost function derived from the
invariance of the stereo geometry. Since the proposed
method does not require the same 3D features be visible
in all monocular images, the stereo rig can perform any
deliberate motion in its environment. This will improve
the accuracy of the estimated parameters.

Central to our approach is the recovery of cam-
era motion from monocular correspondences. Know-
ing the intrinsic parameters of the camera, the recov-
ery of the motion parameters, i.e. the rotation and the
translation (up to a scale factor) is a classical prob-
lem [13], [15], [16]. Closed-form and non-linear solu-
tions can be used.

The organization of this paper is as follows. Sec-
tion 2 presents in details the recovery of the stereo
geometry, i.e. the rotation and the direction of the
translation. Section 3 provides a stability study of the
method in the presence of noise. Section 4 describes ex-
periments with real images. Finally, section 5 provides
a short discussion.
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Figure 1: Self-calibration of a stereo rig using only
monocular correspondences. It should be noted that
feature correspondences between pairs of images can
be di�erent, that is, features need not be seen in all
monocular images.

2 Stereo geometry estimation

In this section, we show that the geometry of the stereo
rig can be recovered from camera motions estimated in-
dependently. The basic idea relies on solving a homoge-
neous system that is often used in hand-eye calibration
problem [14], [11], [6]. However, the unknowns of our
obtained system as well as the solution are di�erent
from those of the hand-eye calibration problem.
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Figure 2: The stereo geometry X is related to the cam-
eras motions by the homogeneous relationship AX =
XB.

We consider one motion of the stereo rig or equiv-
alently two positions. These positions are denoted by
position 1 and position 2, respectively (see Figure 2).
Let A be the transformation between the two positions
of the left camera and B be the corresponding trans-
formation of the right camera. Let X be the stereo
geometry of the stereo rig that we are attempting to
estimate. A, B, and X are 4�4 matrices of the form:

A =

�
RA tA
0T 1

�

where RA is a rotation matrix and tA a translation
vector.

Since the two cameras are rigidly linked, we obtain
the following relationship (see Figure 2):

AX = XB (1)

This equation can be decomposed into two equa-
tions: a matrix equation and a vector equation:

RARX = RXRB (2)

and:
(RA � I) tX = RX tB � tA



with I being the 3�3 identity matrix.
A and B are estimated from monocular correspon-

dences. Therefore, RA and RB are known, and tA and
tB are known up to a scale factor (each one has its own
scale).

To solve Eq. (2) one may take advantage of the par-
ticular algebraic and geometric properties of rotation
matrices. Indeed, this equation can be written as:

RA = RXRBR
T
X

which is a similarity transformation, since RX is an or-
thogonal matrix. Hence, matricesRA and RB have the
same eigenvalues. A well-known property of a rotation
matrix is that it has one of its eigenvalues equal to 1.
Let nB be the eigenvector of RB associated with this
eigenvalue. By postmultiplying Eq. (2) with nB , we
obtain (we have nB = RB nB):

RARX nB = RXRB nB

= RX nB

and we conclude that RX nB is nothing but the eigen-
vector of the matrix RA associated with the eigenvalue
1:

nA = RX nB

One can notice that nA and nB are the rotation axes
associated with the left and right rotations RA and
RB , respectively. Their derivation from RA and RB

is straightforward .
To conclude the stereo geometry parameters

(RX ; tX) satisfy the following constraints:

nA = RX nB (3)

(RA � I) tX = RX tB � tA (4)

2.1 The rotation

Equation (3) is associated with one motion of the stereo
rig. Thus, to estimate RX at least two independent
motions are necessary (two di�erent directions nA). In
the general case of n motions, one may estimate the
rotation matrix RX by minimizing this positive error
function:

f(RX) =

nX
i=1

knAi �RX nBik
2 (5)

Therefore, �nding RX is reduced to the problem of op-
timally estimating rotation from 3D to 3D vector corre-
spondences (see [7]). To minimize f given by Eq. (5),
we represent the rotation RX by a unit quaternion.
The solution for this unit quaternion can be found us-
ing the closed-form solution proposed by Faugeras and
Hebert [2].

2.2 The direction of the translation

In this section, we will show how we can estimate the
direction of the translation, i.e. tX up to a scale fac-
tor. We stress the fact that the norm of the translation
can not be recovered since there is no reference for 3D
lengths.

Once the rotation of the stereo rig RX has been
determined, the direction of the translation can be de-
termined using a set of Eq. (4). Thus, for n motions
of the stereo rig we obtain the following set of vector
equations:

8>><
>>:

.

.

.

(RAi � I) tX = RX tBi � tAi
.

.

.

(6)

Solving for tX using the above system (6) is not as
easy as in the o�-line calibration case (see the hand-
eye calibration in [14], [11]). In this case (o�-line
calibration), both tAi and tBi are known, therefore the
translation tX is obtained by solving a simple linear
system. In our case, we only know the direction of tAi
and tBi; their norm can not be recovered since we have
no knowledge about the observed scene.

In the remainder of this section, we present two lin-
ear methods as well as a non-linear one to estimate the
direction of the translation tX .

2.2.1 First method

This method takes advantage of a well-known relation-
ship between the left motion Ai and the right motion
Bi. This is given by:

nAi � tAi = nBi � tBi (7)

2 Proof: It is known that the vector (RAi � I) tX
is perpendicular to the rotation axis of RAi, i.e. nAi.
Therefore, we have:

nAi � f(RAi � I) tXg = 0

Using Eq.(6) and the relations: (i) nAi = RXnBi and
(ii) (RXnBi)�(RX tBi) = nBi � tBi, one can successively
write:

nAi � f(RAi � I) tXg = 0

nAi � fRX tBi � tAig = 0

(RXnBi) � (RX tBi)� nAi � tAi = 0

nBi � tBi � nAi � tAi = 02

Let uAi and uBi be the unit vector of the translation
vectors tAi and tBi, respectively. Let �Ai and �Bi be



the norms of these two vectors such that tAi = �Ai uAi
and tBi = �Bi uBi (both �Ai and �Bi are unknown).

Therefore, (6) can be written as:8>><
>>:

.

.

.

(RAi � I) tX = �BiRX uBi � �Ai uAi
.

.

.

(8)

where the unknowns are the components of tX as well
as the scalars �Ai and �Bi; i = 1 � � �n.

Eq. (7) allows us to determine the ratio �Ai=�Bi,
noted as ki, (nAi � tAi = 0):

ki = �Ai=�Bi = (nBi � uBi)=(nAi � uAi)

By substituting �Ai = ki �Bi in (8) and considering
that tX = �X uX (uX is the unit vector associated with
tX), (8) becomes:8>><
>>:

.

.

.

(RAi � I)uX = (�Bi=�X) (RX uBi � ki uAi)
.

.

.

(9)

Each motion i provides 3 linear equations in uX =
(u1; u2; u3)

T and �Bi=�X . Within these 3 equations,
one can eliminate the scale factor (�Bi=�X) by divid-
ing the �rst equation and the second one by the third
one. Thus, each motion provides two homogeneous and
linear equations in uX . For example, if we denote the
vectorRX uBi�ki uAi by zi = (z1i; z2i; z3i)

T then these
linear constraints will be given by (the subscript of the
rotation RAi has been omitted):

z3i f(r11 � 1)u1 + r12 u2 + r13 u3g �

z1i fr31 u1 + r32 u2 + (r33 � 1)u3g = 0 (10)

z3i fr21 u1 + (r22 � 1)u2 + r23 u3g �

z2i fr31 u1 + r32 u2 + (r33 � 1)u3g = 0 (11)

with rij being the elements of the rotation matrix RAi.
An algebraic and geometrical analysis of Eq. (9)

shows that the resulting Eqs. (10) and (11) are equiva-
lent (the rank of the matrix (RAi� I) is 2). Therefore,
at least two independent displacements of the stereo
rig are necessary to uniquely determine the unit vector
uX . The resulting system of equations can be written
in matrix form as:

G|{z}
2n�3

uX = 0

For example the last row of G is given by the following
3-vector (see Eq. (11)): (z3n r21�z2n r31; z3n (r22�1)�
z2n r32; z3n r23 � z2n (r33 � 1))T .

Finally, the solution for uX , in the sense of least
squares, will be the unit eigenvector ofGTG associated
with its smallest eigenvalue.

2.2.2 Second method

This method consists of determining all the unknowns
up to an overall scale factor by solving the homogeneous
linear system (8). Therefore, if we represent the un-
knowns by a (3+2n)-vectoru0 = [tTX ; � � � ; �Ai; �Bi; � � �]

T

thus, the constraints provided by the system (8) can be
written in the following matrix form:

G0|{z}
3n�(3+2n)

u0 = 0

where G0 is a 3n� (3 + 2n) matrix.
Therefore, the solution for u0, in the sense of least

squares, will be the unit eigenvector of G0TG0 associ-
ated with its smallest eigenvalue. Finally, the �rst three
components of u0 will give the direction of the transla-
tion vector, i.e. tX up to a scale factor. The disadvan-
tage of this method is that two additional unknowns
will be obtained per supplementary displacement.

2.2.3 Non-linear optimization

Another alternative which is derived from the �rst
method consists of solving the non-linear form of
Eqs. (10) and (11). Thus, for each motion of the stereo
rig we obtain the following two constraints:

(r11 � 1)u1 + r12 u2 + r13 u3
r31 u1 + r32 u2 + (r33 � 1)u3

=
z1i
z3i

(r21 � 1)u1 + r22 u2 + r23 u3
r31 u1 + r32 u2 + (r33 � 1)u3

=
z2i
z3i

Therefore, the direction of the translation uX =
(u1; u2; u3)

T is obtained by minimizing a positive er-
ror function which has the following form:

min
uX

g(uX) =

nX
i=1

(
ẑ1i
ẑ3i

�
z1i
z3i

)2 + (
ẑ2i
ẑ3i

�
z2i
z3i

)2 (12)

where vectors ẑi and zi represent the left side and
the right side of the vector equation (9). Although
the above minimization is non-linear, the optimal so-
lution associated with the global minimum is easy to
�nd since we only have 2 independent unknowns, i.e.
the two spherical coordinates of uX . We have used the
Levenberg-Marquardt technique in order to carry out
the minimization [10].

This method is less sensitive to noise than the linear
ones. The reason is the well-known fact that minimiz-
ing an error function

P
(�i
�i

�
�0

i

�0

i

)2 is quite di�erent

from minimizing
P
(�i�

0

i � �0i�i)
2 because the latter is

weighted by the variable quantity �i�
0

i. This will be
con�rmed in the next section.



3 Stability study

In this section we study the behavior of the proposed
method as a function of motion noise. Since image data
are noisy, uncertainties always a�ect the computation
of camera motions regardless of the method being used.
Since the stereo geometry is derived from camera mo-
tions, it follows that this computation has some un-
certainties associated with it. To perform the stability
study of the proposed self-calibration method, we de-
veloped the following framework:

1. Nominal value for the stereo geometry (X) is pro-
vided. This nominal value can correspond to the
geometry of a real stereo rig.

2. Also provided are n motions for the left camera
from which the induced right camera motions can
be computed with Bi = X�1AiX

3. Uniform noise is added to both the left and right
camera motions, and the stereo geometry is esti-
mated in the presence of this noise using the de-
veloped methods.

4. We study the variations of the estimated stereo
geometry as a function of the noise.

Since both rotations and the translation directions may
be represented as unit vectors, adding noise to motions
consists of changing the direction of all the associated
unit vectors. Therefore, perturbing camera motions is
equivalent to adding noise to the spherical coordinates
of all unit vectors. Simulated noise is obtained using a
random number generator with a uniform distribution
in the interval [��max=2;+�max=2]. Thus, the level
of noise is represented as the value of �max. For each
noise level we make run the self-calibration algorithm
for a large number of trials. In the following we consider
3 motions of the stereo rig (n = 3).

The calibration errors are: rotation error and trans-
lation error. The rotation error is de�ned as the rota-
tion angle of the 3D rotation required to align the two
3D rotations: the theoretical one (nominal) and the
computed one. The translation error is de�ned as the
angle between the two translation directions: the theo-
retical one and the computed one. Figure 3.a shows the
average rotation error as a function of the uniform noise
level over 500 trials. The noise level, i.e. �max varies
from 0 to 6 degrees. Figure 3.b shows the average trans-
lation error as a function of the noise level. The solid
line corresponds to the linear method (�rst one) while
the dashed one corresponds to the non-linear optimiza-
tion. For example, when the level of noise is equal to
2 degrees, the error in rotation is 1.2 degree, and the
error in the direction of the translation is 6.5 degrees

for the linear method and 2.8 degrees for the non-linear
method. We have found that the second linear method
(which solves for the direction of the translation and the
norms of translation vectors) has nearly the same ac-
curacy as the �rst one. Though the �rst linear method
slightly outperforms the second one.
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Figure 3: Error in the stereo geometry estimation in
the presence of uniform noise perturbing the left and
right motions: (a) error in rotation and (b) error in
translation, the solid curve corresponds to the linear
method (�rst method), the dashed curve to the non-
linear optimization.



4 Real image experiments

We have veri�ed our method by experiments with real
image data. To apply our proposed method of self-
calibration, we must establish feature correspondences
between two monocular images. For this purpose, we
have used the image-matching algorithm that was de-
veloped at the INRIA laboratory [17]. This algorithm
provides a set of feature correspondences between two
arbitrary images. From these correspondences we have
computed camera motions (factorization of the funda-
mental matrix). Finally, using left and right camera
motions the stereo geometry is computed using the
method described in Section 2.

All images are provided by two CCD cameras with
resolution 512�512. Camera motions (both left and
right) are computed between two consecutive positions
of the stereo rig. In the �rst experiment we have used 7
stereo pairs of an indoor scene. Figure 4 shows one pair
among them. Therefore, the motion data consist of 6
motions for each camera from which we have computed
the stereo geometry. The top of this �gure shows the
matched features between two consecutive images that
are used in computing the left �rst camera motion.

In the second experiment we have used 4 stereo
pairs. Figure 5 shows one pair among them. Therefore,
the motion data consist of 3 motions for each camera.
The top of this �gure shows the matched features be-
tween two consecutive images that are used in comput-
ing the left third camera motion.

In these two experiments, the number of feature cor-
respondences between 2 consecutive monocular images
varies from 70 to 190. One way to assess the quality
of the self-calibration results is to compute the residual
error of all used criteria. However, since the stereo rig
has been calibrated o�-line we can consider the result
of this calibration as the ground truth and compare the
self-calibration results with it.

Table 1 summarizes the residual errors using the
self-calibration for the two experiments. The second
column shows the residual error associated with the
estimation of the rotation. The third column shows
the residual error associated with the estimation of the
translation. Table 2 shows, for the same experiments,
a comparison between the self calibration and the o�-
line calibration which is considered as the ground truth.
More precisely, the second column shows the error in
rotation, the third columns the error in the direction
of the translation. One can notice that these self-
calibration results are quite accurate to obtain a precise
3D shape.

Figure 4: One among the seven stereo pairs used in the
�rst experiment. The matched monocular features are
shown with white crosses.

P
knA �RXnBk

2 Eq. (12)
Exp. 1 0.13 4.5
Exp. 2 0.14 3.2

Table 1: Residual errors associated with the stereo ge-
ometry computation. The �rst row corresponds to the
�rst experiment, the second row to the second experi-
ment.



Figure 5: One among the four stereo pairs used in the
second experiment. The matched monocular features
are shown with white crosses.

rotation err. (deg) translation err. (deg)
Exp. 1 3.2 5.7
Exp. 2 4.9 4.5

Table 2: The deviation of the self-calibration results
with respect to the o�-line calibration. The �rst row
corresponds to the �rst experiment, the second row to
the second experiment.

5 Conclusion

In this paper, we have presented a new method for the
recovery of the geometry of a stereo rig which can be
used as an alternative for computing the epipolar ge-
ometry of the stereo rig. Neither known reference ob-
jects nor stereo correspondence is required; our system
is therefore self-calibrating and stereo correspondence-
less. The only requirement is that for each camera we
are able to establish feature correspondences between
pairs of monocular images which is more tractable than
solving for stereo correspondence. Furthermore, the de-
veloped method can be integrated into a cooperative
stereo-motion framework. Since the method decouples
the stereo geometry estimation from the 3D reconstruc-
tion problem, tracking the same 3D scene is no longer
required. Thus, deliberate motions can easily be per-
formed in order to determine the stereo geometry in an
accurate manner.

We have shown that the computation of the stereo
geometry can be carried out using standard linear alge-
bra tools. We also presented a non-linear optimization
method for the recovery of the direction of the trans-
lation. A unique solution can be obtained when the
stereo rig performs two motions with di�erent rotation
axes. Experimental results with real images as well as
simulations demonstrate the feasibility and robustness
of the proposed method. Interesting enough is the 3D
accuracy obtained by the method. Although this accu-
racy is not the same as that of the o�-line calibration
it is still acceptable given that the stereo geometry is
recovered by the use of unknown and natural scenes
without any stereo correspondence.

In this work, we have assumed that the intrinsic
parameters of the stereo rig are known. In case where
they are not known, one can estimate them from motion
correspondences using self-calibration techniques for a
single camera [8]. Our future work would be on the
extension of the current technique to simultaneously
estimate the intrinsic and extrinsic parameters of the
stereo rig. A more detailed version of this paper can be
obtained from the authors on request.
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